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This article examines the role of computation and 
quantitative methods in modern biomedical research 
to identify emerging scientific, technical, policy and 
organizational trends. It identifies common concerns 
and practices in the emerging community of computa

tionally-oriented bio-scientists by reviewing a national 
symposium, Digital Biology: the Emerging Paradigm, 
held at the National Institutes of Health in Bethesda, 
Maryland, November 6th and 7th 2003. This meeting 
showed how biomedical computing promises scientific 
breakthroughs that will yield significant health benefits. 
Three key areas that define the emerging discipline of 
digital biology are: scientific data integration, multi-

scale modeling and networked science. Each area faces 
unique technical challenges and information policy 
issues that must be addressed as the field matures. 
Here we summarize the emergent challenges and offer 
suggestions to academia, industry and government on 
how best to expand the role of computation in their 
scientific activities. 
Introduction 
A large, diverse group of scientists gathered at the National 
Institutes of Health in Bethesda, Maryland last year at a 
national symposium – Digital Biology: the Emerging 
Paradigm (http://www.bisti.nih.gov/2003meeting/archive/ 
agenda.html). Attendees reported on how computers and 
the technology-based processes they support are trans
forming biomedical research. Their presentations and 
deliberations revealed that today, more than ever before, 
biomedical scientists are challenged to adopt advanced 
quantitative and computational methods. Computers are 
enabling researchers to improve data quality and labora
tory efficiency, extend their ability to probe and model 
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complex biological phenomena and enact or adjust to 
fundamental changes in the conduct of science. This 
broad-based ‘quickening’ of discovery driven by computers 
has the potential to increase scientific breakthroughs and 
health benefits from biomedical research. 

At the meeting, biomedical computing was portrayed as 
an emerging discipline with well-articulated interests and 
promising future directions. Box 1: The promises of 
biomedical computing offers some details on the potential 
of digital biology. The defining interests and challenges of 
digital biology can be grouped into three areas: (i) 
scientific data integration; (ii) multi-scale biological 
modeling and (iii) the networking of science. The sym
posium depicted biomedical research as approaching the 
point at which it is essential for scientists, administrators 
and technologists to understand the promise of compu
tational biology, acknowledge the unique challenges faced 
by those using computers in biomedical research, accel
erate the diffusion of best practices and integrate the 
views of computational biologists extensively into future 
programs and plans. 

Data integration 
Scientific data of interest to biomedical researchers are 
becoming more complex, heterogeneous and voluminous. 
Bottlenecks in the use of this data occur owing to our 
limited capacity to control quality and integrate data from 
myriad sources, to share data across multiple tasks and to 
exchange data among different people and organizations. 
These bottlenecks threaten productivity and efficiency in 
research activities. Problems with data integration affect 
all data tasks, including semantic interpretation, data 
representation, modeling, data storage and query and 
transaction processing. Despite increasing interest in 
merging data across experiments or disciplines, it remains 
difficult to gain unencumbered access to datasets that might 
be usefully merged. Ultimately the pace of discovery and the 
health of the biomedical research enterprise will depend on 
our ability to resolve these issues and thereby extend our 
ability to locate, access and use disparate data sources. 

There is a pressing need for structuring biological 
knowledge to enable the integration of data and databases 
across domains, modalities and scales. Part of the solution 
involves standards for data content and formats. Data 
integration must accommodate a variety of data types 
ranging from highly structured data, to complex images, 
to textual data that are linguistically complex and 
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Box 1. The promises of biomedical computing 

Promise. Biomedical computing will permit scientists to extract 
biologically meaningful information from datasets of ever-increas
ing size, heterogeneity and complexity. 
Example. Today PhysioNet [4] provides an open-source platform to 
generate insights by bridging molecular- and organ-level obser
vations to decipher large collections of recorded physiologic signals. 
Promise. Computational biology will support analysis of genetic 
variation in disease and drug response so clinicians can predict 
individual disease risk and tailor therapies. 
Example. The HapMap [5] makes disease-gene mapping practical by 
reducing the genetic variants to be examined in a whole genome 
scan from 10 million to 500 000. 
Promise. Computational biology data and applications will be scaled 
so that valuable resources and data are made available to the 
broadest possible scientific community. 
Example. Massive amounts of data are generated in high-through
put fashion today that are most useful if broadly shared. Under 
various Grid and cyber-infrastructure initiatives new linking and 
translational middleware is the critical enabling technology that 
makes geographically dispersed resources more widely available [6]. 
Promise. New relationships among biological and quantitative 
scientists will emerge which benefit both disciplines. 
Example. Mathematicians and computer scientists are finding new 
methods for analyzing data and modeling biological systems. Their 
findings point to new biological processes that reveal new 
architectures and performance enhancements for computers. 
Promise. Computers will change the conduct of clinical research. 
Example. A newly launched initiative at the U.S. National Institutes 
of Health – National Electronic Clinical Trials and Research (NECTAR) 
– is intended to streamline clinical research and to accelerate the 
pace of discovery and application of clinical findings [7]. 
Promise. New organizational structures will emerge. 
Example. Unprecedented inter-governmental partnerships are being 
created to explore new domains of enquiry and push theory in 
uncharted directions. One initiative to improve methods in multi-

scale modeling, for example, [8] involves all major science agencies 
of the US Federal government, NIH, National Science Foundation 
(NSF), National Aeronautics and Space Administration (NASA), and 
Department of Energy (DoE). 
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nuanced. Data must be accommodated at various levels of 
abstraction – molecular, cellular, pathway, organ and even 
whole organism – and at differing stages of analysis. Data 
integration must also consider the needs of many 
biologists who rely on public repositories for the analysis 
of diverse or novel datasets. Even using highly organized 
publicly available biological databases, it is often difficult 
to integrate data. 

What are the challenges with integrating scientific 
data? One is a lack of adequate structured vocabularies 
and ontologies (computer readable vocabularies, taxo
nomies and indexes that constitute the central concepts of 
a scientific discipline) to provide a common basis for 
describing content and related data. Another stems from 
the absence of common formats or inter-convertible 
formats that describe the data. Still another set of 
challenges is posed by the heterogeneous, context-depen
dent and extremely varied nature of biological data. 
Dealing effectively with context requires multiple inter
dependent solutions. Although some scientific disciplines 
have adopted data standards to allow data integration, 
most still lack common terminologies, ontologies and 
repositories. Finally, new algorithms such as Bayesian 
analysis must be developed that combine heterogeneous 
www.sciencedirect.com 
data and form unified, possibly simplified, understanding 
and knowledge of scientific experiments and behavior. 

Biological modeling 
Modeling biological systems is another of the major 
challenges facing biomedical computing. Although some 
biological processes are well characterized within a 
narrow time and spatial range, biology is not well 
understood at the intersections between scales. Most 
biological models are not scalable, for example models of 
synaptic connections between neurons do not scale to 
macroscopic models of the brain. The goal of multi-scale 
modeling is to provide the scientific community with 
rigorous, widely recognized methods  and descriptive
forms to reveal the essential elements needed to simulate 
complex biological processes across scales. 

Similar to the challenges of data integration, multi-
scale modeling is constrained by limitations in: (i) the 
schema for the acquisition, representation and measure
ment of appropriate biological knowledge that can be 
integrated with quantitative modeling and analysis 
efforts; (ii) computational and theoretical modeling 
methods that cross scales and that can be validated; and 
(iii) computational infrastructure in which factors such as 
speed, power, data standards and tools for data analysis 
and visualization do not anticipate the needs of biologists. 
Cultural and organizational factors also have a role in 
keeping biological modeling from taking a more prominent 
role in biology. There is often a lack of adequate multi
disciplinary expertise that is required for developing 
integrated systems models. There is also a lack of 
mechanisms to encourage and reward mutually beneficial 
collaborations between quantitative modelers and biol
ogists. Frequently, opportunities for career advancement 
and other incentives are not available to computational 
and theoretical scientists in the biomedical field. Peer 
review activities for biomedical modeling have large 
challenges in establishing well-balanced, multidisciplin
ary review committees as well as review criteria that 
properly assess the success of model outcomes and 
validation studies. 

The future of modeling in digital biology will necessi
tate the formation of multidisciplinary collaborations and 
a level of cooperation that will challenge the research 
community. The current move towards sharing software 
and data is expected to provide a significant impetus for 
the development and implementation of multi-scale 
modeling. We expect that modeling and simulation of 
complex biological systems across scales will have an 
increasingly important role in advancing biomedical and 
clinical research. 

Networked science 
Advances in information technology enable biomedical 
sciences to collaborate more effectively, thereby promoting 
a richer understanding of fundamental biological phenom
ena. This technology can also forge a seamless pipeline of 
scientific information in which the informatics of discov
ery dovetail neatly into clinical informatics. 

Biomedicine is undergoing a transformation in which 
genomic tools for molecular, structural and functional 
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analysis are becoming widely available and are being 
applied to diverse research tasks from modeling biological 
systems to clinical diagnostics. Linking basic and clinical 
research through networks will permit scientists to 
characterize the function of genetic networks in processes 
of cellular development, health and disease. Such net
works will require new interfaces, as well as new 
translational ‘middleware’ to merge disparate data 
sources into usable knowledge. This is indeed a significant 
challenge. However, the synthesis of insights through 
collaboration among several biomedical specialties is 
certain to advance evidence-based medicine and ulti
mately to improve care. 

Today, data required for diagnosis and treatment are 
acquired in very different ways, across many levels of an 
organization. These data are stored in various different 
formats with different standards; moreover these data 
have different scales with different degrees of resolution 
and noise. New requirements are arising even as we work 
toward a truly effective translational medicine. Specifi
cally, those in clinical settings are finding a need for 
dealing with multi-scale, complex data and to bring data 
mining, federation and other modern computer network
ing strategies to electronic medical record keeping. These 
issues are central to the NIH Roadmap effort to Reengi
neer the Clinical Research Enterprise (http://nihroadmap. 
nih.gov/clinicalresearch/index.asp) [1]. 

In the future, digital biology will be comprised of dense 
networks of people and resources. Advances in instru
mentation, collaboration, data query and analysis offer an 
array of ways to enhance diagnosis, doctor–patient 
interaction and other aspects of health care delivery. 
New grid-based methods allow sharing of geographically 
dispersed heterogeneous data, software algorithms and 
computing resources (The 2003 Bioengineering Consor
tium Symposium June 23rd and 24th at NIH focused on 
team science and the meeting agenda, final report and 
related publications can be found at http://www.becon.nih. 
gov/symposium2003.htm).The NIH Biomedical Infor
matics Research Network (BIRN) (NIH National Center 
for Research Resources Biomedical Information Research 
Network; www.nbirn.net) is a key example of how grid 
computing teamed with web-based services can bring 
informatics-based technologies closer to the scientist’s 
workbench. This initiative fosters large-scale biomedical 
science collaborations via emerging cyber infrastructure 
(high speed networks and distributed high-performance 
computing, as well as the necessary software and data 
integration capabilities). The new software and hardware 
technologies are sophisticated and certainly need 
improvements in areas such as reliability and ease of 
use. However, there is increasing awareness that technol
ogy alone is not the barrier to effective networked science. 
There is an urgent need for improved interdisciplinary 
training, effective management principles for team 
science, proper resolution of government’s role in large-
scale biomedical data acquisition and analysis efforts and 
usable solutions to intellectual property issues of data and 
software sharing and dissemination – in other words, the 
sociology of networked science is a principal barrier to 
progress. The Research Teams of the Future component of 
www.sciencedirect.com 
the NIH Roadmap is attempting to deal with some of these 
issues. (http://nihroadmap.nih.gov/). 

The future of digital biology 
The vision of digital biology emerging among scientists 
today is that of a robust computational environment that 
supports wide-scale, intense scientific collaboration. The 
ideal environment for digital biology supports the widest 
variety of tasks – data analysis, simulation, model 
building and evaluation – for multiple investigators on a 
simultaneous basis. It uses models and unique represen
tations of biological data at all levels to link theory with 
practice. To support the transition of biology to its 
envisioned future as a more quantitative and a predictive 
science, the computational environment of digital biology 
must be reliable, extensible and interoperable in ways not 
yet realized. 

Consider just a few scenarios for how the challenges of 
data integration, modeling and scientific networks might 
be addressed. First, universal data standards are unlikely 
to be adopted widely in the near future, so data capture 
and translation between multiple sources will demand 
special attention. Second, biomedical research might be 
advanced in dramatic ways by robust predictive modeling 
of complex systems that are validated by iterative 
interaction between experiment and theory. Third, in 
addition to new technologies, digital biology will depend 
on new organizational structures – for example team-
based science – as well as partnerships between scientists, 
government and industry at many levels. A partial future 
vision of digital biology is illustrated in Box 2: Selected 
examples of best practice in computational biology. 
Finally, standards and modular software might be devel
oped to provide an interface for heterogeneous datasets 
that can be used productively by biologists. 

Other aspects of the future of digital biology might 
include the following: 

(i) Semantic interoperability 
Coordinated ontologies and terminologies in biology will 
be established to enable new opportunities for data 
sharing and heterogeneous data integration. It is likely 
that many or most research projects that generate data of 
broad interest will use well-formed terminologies consist
ent with standards advanced under the Consolidated 
Health Informatics Initiative (www.whitehouse.gov/omb/ 
egov/gtob/health_informatics.htm). As a part of this trend, 
open source software development procedures with dem
onstration projects will proliferate to promote proof of 
principle and adoption of computational algorithms in the 
scientific and clinical communities. Such open source 
development is a requirement for the newly funded 
National Centers for Biomedical Computing. The National 
Centers for Biomedical Computing are part of the NIH 
Roadmap and information about the program and the first 
round of funded centers is available at http://www.bisti. 
nih.gov/ncbc/index.cfm. 

(ii) Data services 
Research data infrastructures will be developed to support 
software tool development and heterogeneous data 
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Box 2. Selected examples of best practice in computational 
biology 

1. A team of researchers from Case Western Reserve University 
(Cleveland, Ohio; http://www.csuohio.edu/mims/index.htm) is com

bining computational modeling with physiological experimentation 
to understand the relationship between metabolism of single human 
cells and organ and whole body metabolism. This work is yielding 
computer models of metabolism in liver, heart and brain that 
promote evidence-based methods for clinical decision support, 
including diagnosis and treatment [9]. 
2. An industrial team at United Devices, Inc. (Austin, Texas; http://ud. 
com/rescenter/ and http://ud.com/rescenter/files/ds_smallpox.pdf) 
developed technology for massive computational screening of 
lead drug compounds for drugs by accessing otherwise unused 
computer time in a global collaborative network of desktop 
computers. Recently they reported that this work yielded new 
compounds against a smallpox protein. This work will bring new 
drugs into animal and human testing cheaply and quickly, yielding 
more effective, less expensive drugs (United Devices, Inc. http:// 
www-unix.gridforum.org/7_APM/LSG.htm; www.ud.com/rescenter/ 
files/ds_smallpox.pdf.) 
3. A team from the University of Connecticut in Storrs, Connecticut 
(http://www.cbit.uchc.edu/index.html) formed the National 
Resource for Cell Analysis and Modeling, a nationally accessible 
computational environment for modeling cell functions. This 
environment speeds the pace of research at the cellular level by 
permitting researchers to readily put experimental biochemical data 
in the context of a computational model of a cell to understand how 
individual biochemical reactions give rise to coordinated functions 
at the pathway and cellular level [10]. 
4. A team from Johns Hopkins University (http://www.bme.jhu.edu/ 
labs/levchenko) is using Monte Carlo modeling to predict biochemi

cal signaling pathways in heart muscle cells. By using the computer-

driven random walk to simulate diffusion of signaling molecules in 
the cell, it is possible to model cellular behavior in great detail, and 
thus provide a more detailed view of cell signaling. Cell signaling 
relates to basic and clinical research [11]. 
5. A team from Indiana University (http://www.indiana.edu/wneurosci/ 
sporns.html and http://www.indiana.edu/wcortex/robots.html) is  
developing an autonomous computational robot with learning 
capabilities similar to the human brain. This research is aimed at 
understanding principles of brain function and also at understanding 
brain function to build automated intelligent systems and robots that 
can serve human needs [12]. 
6. A team based at Massachusetts General Hospital/Harvard Medical 
School is studying malignant brain tumors as self-organizing and 
adaptive biosystems. Their Tumor Complexity Modeling Project 
(TCMP) uses methods from various disciplines, such as tumor 
biology, bioengineering, materials science, mathematical biology, 
nonlinear physics as well as computational and complex systems 
science. The immediate aim of TCMP is to develop novel exper
imental, computational, mathematical and theoretical tumor 
models. The ultimate goal is to develop virtual treatment planning 
devices and strategies for malignant brain tumors (http://btc.mgh. 
harvard.edu/TumorModeling/) 
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integration. Various data repositories will implement 
software tools to allow format inter-conversions and 
make data interoperable. Funded projects will routinely 
make data available. Stakeholders will insist on infra
structures and practices that maintain data for current 
and future uses. Community-managed databases and 
data services are probable future developments. These 
will involve public–private partnerships to improve 
software development and validation or to accelerate 
diffusion of useful algorithms. For example, the Lung 
Image Database Consortium (http://imaging.cancer.gov/ 
programsandresources/InformationSystems/LIDC) [2] 
www.sciencedirect.com 
gathers standard, annotated images that will be used for 
imaging research and for a range of research, including 
the development of tools for clinical decision support 
(‘personalized medicine’) or population-based studies of 
biomedical and scientific phenomena. 
(iii) Changed publishing practices 
Scientific journals will increasingly use standardized 
language and document structures in research publi
cations. Many will create companion versions of articles as 
databases for context-dependent cross-querying of litera
ture. Published reports of experimental data (including 
negative experimental results) will provide new levels of 
detail of protocols, so that results are reproducible. 
Furthermore, articles on technology development should 
gain greater acceptance in scientific journals to foster 
multidisciplinary research, such as multi-scale modeling. 
(iv) Multi-scale modeling 
Biomedical research ultimately requires predictive mod
eling of complex systems that is experimentally validated. 
Interdisciplinary projects will look at problems across 
multiple scales – for example, developing models of ion 
channel mutations in the heart that can predict the 
development of disease in the heart. Success in multi-scale 
modeling depends on the development of novel theoretical 
and computation approaches to discover new methods for 
crossing the boundaries between scales. These enabling 
technologies need to be developed simultaneously with 
focused data collection at multiple scales for each disease 
or organ system. 
(v) Biomedicine-specific infrastructure 
It is realistic to expect that novel solutions adopted in 
specific biomedical domain problems will be incrementally 
integrated with prototyped components of the Grid 
infrastructure. Scientists and administrators will identify 
and solve performance limitations in grid computing. 
Provided the investment follows to correct these limi
tations, the computational infrastructure to support 
collaborative science will improve and the capacity to 
manage and share complex, voluminous data and comput
ing resources will be greatly enhanced. 
(vi) Support for continuous learning 
Education and training are needed to facilitate  the
evolution of biology toward a large-scale paradigm. 
Community involvement is required so that the scientific 
resources made available by large-scale facilities can be 
used to solve the most problems. Education is needed at 
two levels: How can large-scale resources and facilities 
drive scientific progress for an individual investigator? In 
addition, we need to explore ways to use the tools, data 
types and the associated dynamic information to gain a 
higher-level understanding of the problems facing an 
entire field. Concrete examples are the needs in multi-
scale modelling. It is important to train mathematical 
biologists as well as biological mathematicians. 
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(vii) Changes in policy and the culture of scientific 
collaboration 
There is a general consensus that regardless of the 
physical distance between different scientists in the 
community, frequent interactions and intense data shar
ing are essential in an era of digital biology. Hence, a wide 
variety of organizational and policy issues must be 
addressed, including openness, data dissemination, 
semantic interoperability, data integrity and validation, 
protection of human data, operational efficiency, intellec
tual property and ethics policies, such as conflict of 
interest [3]. 

Conclusions 
With the advent of genomics and proteomics, bioscientists 
increasingly acknowledge the ever present need for 
computers. But few biologists view computers as a 
cornerstone of biology. Instead most regard computation 
as a ‘black box’ and focus on data and analytical outputs, 
not the machine processes by which they were generated. 
The catch phrase ‘digital biology’ points to a fundamen
tally unique future in which computers will enable 
scientists to: 

Exploit opportunity 
To the extent that we approach biology with the proper 
computer tools and methods, genomics and proteomics 
will lend themselves to discrete observations and math
ematical formulations that were not possible just a few 
years ago. Our capacity for building robust models of 
biological processes expands because of the new data and 
will profoundly extend our questioning and perception. 

Avoid problems 
Focusing effort on data integration, biological modeling 
and networked science along the lines outlined above will 
help to avert a potential crisis owing to the complexity of 
the biological systems as we are now coming to view them. 
Without computational support, sciences rooted in geno
mics and proteomics risk being hindered by the volume 
and disparate nature of data to be accessed, queried and 
managed. 

Realize a dream 
Computation and quantitative methods are at the fore
front of life sciences research. The envisaged future would 
extend human perception in the laboratory, establish the 
spatial and temporal context of disease at multiple levels, 
assist scientists with integration of complexity and 
maintain or create new levels of efficiency in basic 
discovery processes. With proper multidisciplinary effort, 
computational and quantitative approaches to biomedical 
research will produce scientific breakthroughs that lead to 
www.sciencedirect.com 
significant health benefits. As revealed through the links 
in this article, computers have already extended the 
capacity of physicians to diagnose and anticipate the 
course of cancers, as well as diseases that affect almost all 
organs of the body. 

Accelerate the pace of scientific advancement 
Attending to these issues now is consistent with other 
recent trends such as intensifying collaboration in biology. 
It opens the door for biology to draw more deliberately on 
engineering and other sciences. 

Many assert that we are at a crossroads where immedi
ate, decisive action is required to achieve the full potential of 
digital biology. Whatever specific steps are taken to advance 
a digital future for biology, scientists should consider the 
many current challenges in data integration, multi-scale 
modeling and the networking of science. 
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