Creating Biomedical Technologies to Improve Health



Science Highlights • November 30, 2007
Existing surgical simulation techniques often fall short of realism. A new advance in simulation from researchers at Rensselaer Polytechnic Institute will provide doctors the opportunity to learn new medical procedures and hone motor skills without risking the health and safety of their patients. Soon, surgeons will be able to more realistically practice operations in which bleeding and smoke from cauterization can impact the procedure.
Science Highlights • October 26, 2007
A research team from Northwestern University has developed a new technique to noninvasively track changes related to pancreatic cancer and to do so without disturbing the highly sensitive organ. This work may clear the way for new screening tools to discover the disease at its earliest stages.
Press Releases • October 17, 2007
The National Institute of Biomedical Imaging and Bioengineering (NIBIB), part of the National Institutes of Health (NIH), and the Department of Biotechnology (DBT) of the Ministry of Science and Technology of the Republic of India, have entered into a bilateral agreement to develop low-cost health-care technologies aimed at the medically underserved.
Press Releases • October 4, 2007

The National Institute of Biomedical Imaging and Bioengineering (NIBIB), part of the National Institutes of Health (NIH), today announced the award of more than $12 million in grants to support research and development of potentially high-impact, innovative technologies to advance health care.

Press Releases • October 4, 2007
The expertise of the DBEPS staff supports the mission of the NIBIB to integrate bioengineering with the life and physical sciences, and spans cutting-edge technologies operating at scales ranging from near-atomic resolution to intact organisms.
Science Highlights • September 27, 2007
Microsurgical procedures require precision. Involuntary movement or jerk can traumatize surrounding tissue and cause myriad complications for the patient. A research team at Carnegie Mellon University has developed a handheld device that compensates for unwanted motion and stabilizes the tip of microsurgical instruments. The device could improve the safety of microsurgery and reduce practitioner fatigue. Clinical applications include retinal surgery, neurosurgery, cardiac surgery, and cell biology.
Science Highlights • September 26, 2007
Researchers supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) have developed a new method to study the behavior of molecules, particularly how they interact with each other.
Science Highlights • August 21, 2007
Tepha, Inc., has genetically engineered a strain of E. coli to produce a novel, absorbable biopolymer that is flexible, strong, and well tolerated in vivo. The FDA recently cleared surgical suture and mesh products made of the polymer for marketing, marking the first time a medical device made of a naturally derived polyester has received FDA clearance.
Science Highlights • July 18, 2007
Because no biomarkers exist for Alzheimer’s disease, preclinical diagnosis is impossible and assessment of therapies that could prevent or reverse the course of the disease is inhibited. By combining mouse models, multiphoton microscopy, and unique imaging agents, researchers at Massachusetts General Hospital in Boston are providing important information about the mechanisms of this progressive neurodegenerative disease and techniques to test new drugs more quickly. Their work also provides a springboard for developing new approaches to image the disease in humans.
Science Highlights • June 6, 2007
Bacteria that cause two common ailments, traveler’s diarrhea and the sexually transmitted disease gonorrhea, grab hold of humans because of tiny anchors, or pili, on the bacteria’s surface. A University of Virginia researcher has developed a novel approach to imaging these flexible filaments. Understanding the pili’s structure may help other researchers develop new vaccines to treat highly infectious diseases.