What can we learn from NSF about broader potential toxicity?

Shawn E. Cowper, MD
Yale University
Conflicts of Interest

Contracted Research: Bracco and Navitas Life Sciences GmbH.
What did we learn from NSF about GCCA toxicity?
What did we learn from NSF about GCCA toxicity?

• We proved what Carr, et al. warned against in 1984 (1)
 – “…care should obviously be taken in patients with impaired renal function where high in vivo concentrations of Gd-DTPA may occur for prolonged periods.”

• We probably explained why Wedeking, et al. (2) found the best correlation of long term deposition of Gd in mice with GCCA dissociation rates at pH 1 (acidic) rather than pH 7.4 (physiologic)
 – Lysosomal pH = 4.5-5 (Mindell (3))
 – Gd detected in lysosomes of macrophages (Mizgerd (4))

• An experimental model of fibrosis triggered by lysosome-processed Gd nanoparticles acting through NLRP3 inflammasome release has been developed by Li, et al. (5)

Image credits from preceding slide
3. With permission, SE Cowper.
4. With permission, SE Cowper.

What do we still need to know?

- **How does one define gadolinium toxicity?**
 - What is a normal gadolinium level? (inputs: dose, EGFR, agent, etc.)
 - Are there other objective measures? (labs, clinical exam, imaging)
 - Is depression a component of the syndrome?
 - Do some patients with NSF have superimposed gadolinium toxicity?
 - What is different about those with NSF who do not have gadolinium toxicity?

- **Are symptoms of gadolinium toxicity reproducible?**
 - Can they be measured quantitatively and objectively?
 - Are they self-limited or progressive?
 - Are deposited foci predictive of symptoms/signs?

- **Is dechelation required to produce symptoms?**
 - If so, in the absence of increased dwell time, is this a dose effect?
 - Is incidence equal among available agents?

- **What are the stabilities of GCCA at lysosomal pH?**
 - Can they be made more stable?