Application of Machine Learning to Improve Understanding of Gd-deposition

Tim Leiner, MD PhD EBCOR
Professor of Radiology
Chair of Cardiovascular Imaging

Department of Radiology
Utrecht University Medical Center
Utrecht, The Netherlands

t.leiner@umcutrecht.nl

@MRAGuy
Conflict of Interest

Machine Learning

- Powerful tool for fully automated assessment of (longitudinal) human brain MRI datasets
 - Segmentation
 - Quantification
 - Ideally suited for analysis of large datasets

Moeskops et al. Neuroimage Clin 2017;17:251-262
Proposal

• Build a central repository with large number of brain MRI scans
 • Ideally: >100k-1M brain MRI scans
 • CE and non-CE
 • Preferably patients with multiple examinations over time
 • Aim to include data of healthy controls
 • Derive ‘normal’ values’ as function of age for various brain structures
 • Not limited to deep brain nuclei
• Compare patients who received Gd to patients who did not
• Evaluate changes over time in patients who received (multiple doses) Gd and compare these changes to patients who did NOT receive Gd
• Correlate quantitative measures of Gd-deposition to clinical outcomes