## Healthcare Database Healthcare Data Science to Quantify Adverse Health Effects

Sebastian Schneeweiss, MD, ScD



Division of Pharmacoepidemiology and Pharmacoeconomics, Dept. of Medicine, Brigham & Women's Hospital/ Harvard Medical School

### Conflicts of Interest

PI, Harvard-Brigham & Women's Hospital Drug Safety Research Center (FDA); Co-Chair, Methods Core of the FDA Sentinel System; Consulting in past year: WHISCON LLC, Aetion Inc. (incl. equity); PI of research contracts to the Brigham & Women's Hospital: Bayer, Genentech, Boehringer Ingelheim; Grants/contracts from NIH, AHRQ, PCORI, FDA, IMI, Arnold Foundation; Advising FDA, EMA, PCORI, PMDA, Health Canada.

### Effectiveness Research with Healthcare Databases



### Effectiveness Research with Healthcare Databases





In-hospital safety examples **blinded** with respect to RCT findings:

#### followed by

#### **Database Study**



# The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

**FEBRUARY 21, 2008** 

VOL. 358 NO. 8

# The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 29, 2008

VOL. 358 NO. 22

### Aprotinin during Coronary-Artery Bypass Grafting and Risk of Death

Sebastian Schneeweiss, M.D., Sc.D., John D. Seeger, Pharm.D., Dr.P.H., Joan Landon, M.P.H., and Alexander M. Walker, M.D., Dr.P.H.

### A Comparison of Aprotinin and Lysine Analogues in High-Risk Cardiac Surgery

Dean A. Fergusson, M.H.A., Charles MacAdams, Ramiro Arellano, M.D., M.Sc., Raymond Martineau, M.D.,

**BART** 

M.D., Stephen Fremes, M.D., Peter C. Duke, M.D., Côté, M.D., Jacek Karski, M.D., M.Sc., George Wells, Ph.D., Investigators†

#### Risk of death (7d)

HR = 1.78 (1.56 - 2.02)

| Outcome                                                         | Any Amount of Aprotinin (N=33,517) | Any Amount<br>of Aminocaproic<br>Acid (N=44,682) | Any Amount       | of Study Drug        | Low or High<br>Amount of Study<br>Drug |
|-----------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------|----------------------|----------------------------------------|
|                                                                 |                                    |                                                  | Unadjusted       | Adjusted             | Adjusted                               |
|                                                                 | no. of po                          | atients (%)                                      |                  | relative risk (95% C | 1)                                     |
| In-hospital death from any cause                                | 1512 (4.5)                         | 1101 (2.5)                                       | 1.83 (1.70–1.98) | 1.64 (1.50–1.78)     | 1.50 (1.36–1.66)                       |
| In-hospital death from any<br>cause within 7 days<br>after CABG | 631 (1.9)                          | 435 (1.0)                                        | 1.93 (1.71–2.18) | 1.78 (1.56–2.02)     | 1.64 (1.41–1.91)                       |

#### Risk of death (30 d)

HR = 1.53 (1.06 - 2.22)



CV safety example **blinded** with respect to RCT findings:

#### **Database Study**

followed by

**RCT** 

#### **ARTHRITIS & RHEUMATOLOGY**

Cardiovascular Safety of Tocilizumab Versus Tumor Necrosis Factor Inhibitors in Patients With Rheumatoid Arthritis

A Multi-Database Cohort Study

Seoyoung C. Kim,<sup>1</sup> Daniel H. Solomon,<sup>1</sup> James R. Rogers,<sup>1</sup> Sara Gale,<sup>2</sup> Micki Klearman,<sup>2</sup> Khaled Sarsour,<sup>2</sup> and Sebastian Schneeweiss<sup>1</sup>

# Risk of composite CV outcome

HR = 0.85 (0.61-1.19)

|                                                    | 1CZ             |               |                  |                     |                     |
|----------------------------------------------------|-----------------|---------------|------------------|---------------------|---------------------|
|                                                    | No. of subjects | No. of events | Person-<br>years | IR<br>(95% CI)†     | HR<br>(95% CI)      |
| s-treated analysis Composite cardiovascular events |                 |               |                  |                     |                     |
| Medicare                                           | 2,531           | 17            | 1,841            | 0.92<br>(0.56–1.44) | 0.70<br>(0.40–1.24) |
| PharMetrics                                        | 2,614           | 10            | 2,061            | 0.49<br>(0.25–0.86) | 1.00<br>(0.45–2.22) |
| MarketScan                                         | 4,073           | 9             | 2,999            | 0.30<br>(0.15–0.55) | 1.03<br>(0.46–2.34) |
| Combined                                           | 9,218           | 36            | 6,901            | 0.52<br>(0.37–0.71) | 0.84 (0.56–1.26)‡   |
|                                                    |                 |               |                  |                     |                     |

#### ABSTRACT NUMBER: 3L

Comparative Cardiovascular Safety of Tocilizumab Vs Etanercept in Rheumatoid Arthritis: Results of a Randomized, Parallel-Group, Multicenter, Noninferiority, Phase 4 Clinical Trial

#### **ENTRACTE**

Jon T. Giles<sup>1</sup>, Naveed Sattar<sup>2</sup>, Sherine E. Gabriel<sup>3</sup>, Paul M. Ridker<sup>4</sup>, Steffen Gay<sup>5</sup>, Char David Musselman<sup>7</sup>, Laura Brockwell<sup>6</sup>, Emma Shittu<sup>6</sup>, Micki Klearman<sup>7</sup> and Thomas Fl

# Risk of composite CV outcome

HR = 1.05 (0.77-1.43)

| Etanercept<br>N = 1542 | Tocilizumab<br>N = 1538 | Tocilizumab<br>vs Etanercept |            |
|------------------------|-------------------------|------------------------------|------------|
| First Events,<br>n     | First Events, n         | HR <sup>a</sup>              | 95% CI     |
| 78                     | 83                      | 1.05                         | 0.77, 1.43 |

#### Effectiveness Example **blinded** with respect to RCT findings:

#### **Database Study**

followed by

**RCT** 



ncidence of

EXPERIENCE NEW HORIZONS IN DIABETES



SAN DIEGO, CA JUNE 9-13, 2017

Cardiovascular outcomes associated with canagliflozin versus other non-gliflozin antidiabetic drugs: population based cohort study

Elisabetta Patorno, <sup>1</sup> Allison B Goldfine, <sup>2</sup> Sebastian Schneeweiss, <sup>1</sup> Brer Robert J Glynn, <sup>1</sup> Jun Liu, <sup>1</sup> Seoyoung C Kim<sup>1,4</sup>

#### Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes

ORIGINAL ARTICLE

Bruce Neal, M.B., Ch.B., Ph.D., Vlado Perkovic, M.B., B.S., Ph.D.,
Kenneth W. Mahaffey, M.D., Dick de Zeeuw, M.D., Ph.D., Greg Fulcher, M.D.,
Ngozi Erondu, M.D., Ph.D., Wayne Shaw, D.S.L., Gordon Law, Ph.D.,
Mehul Desai, M.D., and David R. Matthews, D.Phil., B.M., B.Ch.,
for the CANVAS Program Collaborative Group\*

# Prevention of heart failure hospitalization



# Prevention of heart failure hospitalization

HR = 0.67 (0.52-0.87)

4-3-Placebo
2-1-Canagliflozin
0 26 52 78 104 Weeks
4347 4267 4198 4123 3011
5795 5732 5653 5564 4437 8

#### Safety Example after RCT findings were released: Confirming signal

**RCT** 

followed by

**Database Study** 

ORIGINAL ARTICLE

CORRESPONDENCE

#### Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes

Bernard Zinman, M.D., Christoph Wanner, M.D., John M. Lachin, Sc.D., David Fitchett M.D. Frich Blubmki Dh.D. Stefan Hantel, Ph.D., Michaela Ma is, Dr.P.H., Odd Erik Johansen

li C. Broedl. M.D.. and Silvio E. Inzudeni, M.D., for the EMPA-REG COTCO ME Investigators

#### **Empagliflozin and risk of DKA**

1 / 2,333 vs. 3 / 2,345

HR = 2.9 (0.4-20.0)

| Table 2. Adverse Events.* |                     |                                     |                                     |                                       |
|---------------------------|---------------------|-------------------------------------|-------------------------------------|---------------------------------------|
| Event                     | Placebo<br>(N=2333) | Empagliflozin,<br>10 mg<br>(N=2345) | Empagliflozin,<br>25 mg<br>(N=2342) | Pooled<br>Empagliflozin<br>(N = 4687) |
|                           |                     | number of pa                        | tients (percent)                    |                                       |
| Diabetic ketoacidosis¶¶   | 1 (<0.1)            | 3 (0.1)                             | 1 (<0.1)                            | 4 (0.1)                               |

#### Risk of Diabetic Ketoacidosis after Initiation of an SGLT2 Inhibitor

Michael Fralick, M.D. Sebastian Schneeweiss, M.D., Sc.D. Elisabetta Patorno, M.D., Dr.P.H.

#### SGLT-2 and risk of DKA

26 / 38,045 vs. 55 / 38,045

HR = 2.2 (1.4-3.6)

| Days of Follow-up                                           | DPP4 Ir<br>(N = 38                              |              | SGLT2 Inhibitor<br>(N = 38,045)                 |                          |
|-------------------------------------------------------------|-------------------------------------------------|--------------|-------------------------------------------------|--------------------------|
|                                                             | Diabetic<br>Ketoacidosis                        | Hazard Ratio | Diabetic<br>Ketoacidosis                        | Hazard Ratio<br>(95% CI) |
|                                                             | no. of patients<br>(rate per 1000<br>person-yr) |              | no. of patients<br>(rate per 1000<br>person-yr) |                          |
| 180 Days of follow-up†                                      | 26 (2.2)                                        | 1.0          | 55 (4.9)                                        | 2.2 (1.4-3.6)            |
| 60 Days of follow-up                                        | 13 (2.3)                                        | 1.0          | 31 (5.6)                                        | 2.5 (1.3-4.7)            |
| 30 Days of follow-up                                        | 10 (3.3)                                        | 1.0          | 22 (7.5)                                        | 2.3 (1.1-4.8)            |
| 180 Days of follow-up among patients not receiving insulin‡ | 9 (1.0)                                         | 1.0          | 21 (2.5)                                        | 2.5 (1.1–5.5)            |

Effectiveness Example **after** RCT findings were released:

**RCT** 

followed by

**Database Study** 

#### The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 17, 2009

VOL. 361 NO. 12

### **Thrombosis** and International Journal for Vascular Biology and Medicine **Haemostasis**

#### Dabigatran versus Warfarin in Patients with Atrial Fibrillation

Stuart J. Connolly, M. John Eikelboom, M.D., Jonas Ellison Themeles, B.A., Jeann Jun Zhu, M.D., Rafael Diaz, I Campbell D. Joyner, M.D.,

**RE-LY** 

c., Paul A. Reilly, Ph.D., D., Denis Xavier, M.D. ph Diener, M.D., Ph.D., ee and Investigators\*

Safety and effectiveness of dabigatran and warfarin in routine care of patients with atrial fibrillation

John D. Seeger<sup>1</sup>; Katsiaryna Bykov<sup>1</sup>; Dorothee B. Bartels<sup>2,3</sup>; Krista Huybrechts<sup>1</sup>; Kristina Zint<sup>2</sup>; Sebastian Schneeweiss<sup>1</sup>

#### **Stroke prevention**

HR = 0.66 (0.53-0.82)



#### Stroke prevention

HR = 0.77 (0.54-1.09)



### Key information components

### Accurate assessment of Exposure:

- Completeness of <u>repeated</u> uses
- Prescribing vs. dispensing vs. use of drugs

Interview
Pill counter

#### Accurate assessment of Outcome:

- High specificity of outcome assessment when estimating relative effect measures: risk ratio, rate ratio, hazard ratio
- Reasonable sensitivity to preserve event counts

### Complete assessment of Confounders:

- Reduced unobserved confounding
- Pre-exposure measurement to avoid adjustment for intermediates

How were data generated?

What does that tell us about the quality of data?

For our study? (Fit-for-Purpose)





### Framingham Study (cohort)

Major: Biennial examination procedures with extensive examination + interview

Additional: NDI linkage

| Drug exposure assessment | Current or past use of estrogen @ biennial exam; No start date, no stop date                                                                                                       |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Outcome assessment       | Physician review of clinical notes, hospital and physician records and death certificates.  New Q waves in ECG since last visit.  Stroke confirmed by review panel w/ neurologists |  |
| Confounder assessment    | Very detailed, pre-exposure                                                                                                                                                        |  |
| Population size          | 5k – 20k                                                                                                                                                                           |  |

### Nurses' Health Study (cohort)

Major: Biennial self-administered questionnaires

Additional: Endpoint validation with medical records; NDI linkage

| Drug exposure assessment | "Are you currently taking any of the following medications at least once a week"  No start date, no stop date (Consequences: Hernan et al) |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Outcome assessment       | Non-fatal events: permission for <b>medical records review</b> (exposure blinded) Fatal events: Family + Med Records + NDI linkage         |  |
| Confounder assessment    | Very detailed, pre-exposure                                                                                                                |  |
| Population size          | 100k                                                                                                                                       |  |

Michels KB, Rosner BA, Manson JE, et al. Prospective study of calcium channel blocker use, cardiovascular disease, and total mortality among hypertensive women: the Nurses' Health Study. *Circulation*. Apr 28 1998;97(16):1540-1548.

Stampfer MJ, Colditz GA, Willett WC, et al. Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses' health study. *N Engl J Med.* Sep 12 1991;325(11):756-762.

# Fundamental difference between primary vs. secondary data

| Control over:                                        | Primary (research) data: Investigator defines measurements            | Secondary (transactional):  Business purpose defines measurement                                                                                       |
|------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Which items will be measured                         | Targeted measurements for research study -> little unobserved factors | Information necessary to get the business done                                                                                                         |
| <b>How</b> items will be measured                    | Measurement methods designed by investigator -> sufficient accuracy   | Measurement good enough for business purpose                                                                                                           |
| What surveillance will be in place to measure items? | Measurements actively scheduled -> high completeness                  | Measurements tied to healthcare encounters -> informative missingness (sicker patients with more encounters have more opportunity to have Dx recorded) |

Secondary data work best if business interests are serendipitously aligned with research interests

### **Examples: Outcome assessment**



### Summary (Example)



### Conclusion

- There is no single perfect data source or study character
- Fit-for-purpose considerations
  - Exposure assessment
  - Endpoint assessment
  - Risk factors assessment before MRI exposure
- Clinical data do well
  - In detailed risk factor assessment
  - Outcome assessment
- Clinical data struggle:
  - Size
  - Prescription drug assessment