BRAINWORKS

Mohammad M. Ghassemi, Ph.D.

Assistant Professor, Computer Science, Michigan State University Data and Technology Advancement National Service Scholar, NIH

Career straddles academia, industry, and entrepreneurship

Interested in both the theoretical development, and practical deployment, of technology

Mohammad Ghassemi, Ph.D.

Is a assistant professor of computer science at MSU with extensive national and international consulting experience. He holds graduate degrees from MIT, and Cambridge (UK). He was a director of data science at S&P Global, and a strategic consultant with BCG. He has over ten years of technical and strategic consulting experience for many of the world's largest brands.

CONSULTING

Human Augmentation and AI Lab

develop tools and systems that combine human and machine intelligence (A.I.) to solve problems that neither humans nor machines can solve as effectively alone. More specifically, we develop new theoretical knowledge and practical tools for Augmented Intelligence (A-I): the enhancement of individual or collective cognitive function through the use of technology and social/environmental factors.

Data scholar project supports mission of the BRAIN Initiative

BRAIN supports technologies that promote a dynamic understanding of the brain

Deliver a functional proof-of-concept of the "BRAIN initiative Workspace to ORganize the Knowledge Space" platform ("BRAIN WORKS" hereafter) – a tool for the discovery of more comprehensive theories of brain function through knowledge integration.

Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

Data Science is Pivotal: by automating tasks, augmenting investigator capabilities we may assist with the discovery of holistic theories of brain function, and definition of new research horizons.

[1-6]: See References Slide

BRAINWORKS will support discovery of new brain theories Discovery through integration of multi-modal, multi-scale brain data and knowledge

Brain Data is Heterogeneous: exists in multiple modalities, scales and levels of resolution. The heterogeneity of brain data requires thoughtful approaches to data storage, analysis and representation.

Discovery Requires Integration: next generation brain theories require a holistic approach to the brain where the plurality of contexts that impact brain structure and function are accounted for.

BRAINWORKS converts scientific papers into knowledge graphs

Allows for exploration of scientific literature, and integration of findings across papers

BRAINWORKS: is an web application being developed in 2021 that uses AI to organize the neuroscience literature as an intuitive and interactive knowledge graph.

Motivation: Neuroscience theories and knowledge are distributed across a complex, rapidly evolving scientific landscape that no one person can fully master.

BRAINWORKS converts scientific papers into knowledge graphs

Allows for exploration of scientific literature, and integration of findings across papers

BRAINWORKS: is an web application being developed in 2021 that uses AI to organize the neuroscience literature as an intuitive and interactive knowledge graph.

Motivation: Neuroscience theories and knowledge are distributed across a complex, rapidly evolving scientific landscape that no one person can fully master.

Project developed in five phases over a twelve-month period

Initial efforts focus on data preparation transitioning to outcome generation and value demonstration.

1. Specification January, 2021	2. Data to Information February – May, 2021	3. Algorithms and Comms. June – August, 2021	4. Augmentation September – November, 2021	5. Value December, 2021
Advantor Value Communications	Information	Algorithms Communications	Automation Augmentation Discovery	Value
1.1 Define value1.2 Define outcomes1.3 Define Foundations	2.1 Data characterization 2.2 Data centralization 2.3 Data cleansing	3.1 Automation outcomes3.2 Communication outcomes3.3 Performance Evaluation	4.1 Augmentation outcomes4.2 Integration of novel data4.3 Performance Evaluation	5.1 Demonstration 5.2 Documentation 5.3 Hand-off

To start, we spoke with several internal and external experts

Definition of the value, data science outcomes, and required foundations

Acknowledgements

Jim Gnadt

Program Director

NINDS

Grace Peng Program Director NIBIB

Edmund Talley Program Director NINDS

William Lytton Professor SUNY Downstate

Olivier Burton

Program Director

NIDA

Fidel Santamaria Professor UTSA

Carina Curto Professor Penn State

Karen David Program Director NINDS

Susan Volman

Program Director

NIDA

Christina Fang Program Manager NINDS

Martha Flanders **Program Director** NEI

Brent Dorion

Professor

Pittsburgh

Program Director

NIMH

Merav Sabri **Program Director** NCCIH

Amy Poremba

Program Director

NIDCD

Larry Abbot Professor Columbia

Marc Howard Professor ΒU

Greg DeAngelis Professor Rochester

Elizabeth Powell

Program Director

NIAAA

Ivan Soltesz

Professor

Stanford

David Kleinfeld Professor UCSD

Jan Drugowitsch

Professor

Harvard

Florian Engert Professor Harvard

Elizabeth Buffalo Professor Washington

Ilya Nemenman Professor Emory

Susan Wright

Program Director

John Ngai

NINDS

Holly Moore **Program Officer**

Our next step was to collect data to build the knowledge graph

We focused on data cleansing, characterization, and centralization

Combined data provides view of science in more complete context Unites information on grants, papers, topics, authors, institutions, and patents

Now we are developing tools to analyze and visualize the data

Specifically, we are focusing on NLP processing of documents, and dynamic networks

Publication topic graph of BRAIN awardees (2014 – 2020)

Nodes: topics in papers

• <u>Size</u>: number of papers published

Edges: topic co-occurrence in papers

- <u>Color</u>: NIH BRAIN Team
- <u>Gray</u>: increased inter-group output

Exclusion Criteria:

• <u>Edges</u>: only rank 1 edges are shown.

Publication topic graph of BRAIN awardees (2014 – 2020)

Nodes: topics in papers

• <u>Size</u>: number of papers published

Edges: topic co-occurrence in papers

- <u>Color</u>: NIH BRAIN Team
- <u>Gray</u>: increased inter-group output

Exclusion Criteria:

• <u>Edges</u>: only rank 1 edges are shown.

Co-occurrence of topics in publications provides research trends Trends in 'Neuroplasticity' research may be understood by topics that covary with it

Co-occurrence of topics in publications provides research trends Trends in 'Neuroplasticity' research may be understood by topics that covary with it

Co-occurrence of topics in publications provides research trends Trends in 'Neuroplasticity' research may be understood by topics that covary with it

Publication topic graph of BRAIN awardees (2014 – 2020)

Nodes: topics in papers

• <u>Size</u>: number of papers published

Edges: topic co-occurrence in papers

- <u>Color</u>: NIH BRAIN Team
- <u>Gray</u>: increased inter-group output

Exclusion Criteria:

• Edges: only rank 1 edges are shown.

How do collaborative projects impact author networks and paper

- Retrospective population:
 - ~1,500 Researchers affiliated with ~60 lab:
 - Intervention: ~30 labs received an award in 2017
 - <u>Control</u>: ~30 labs received an award in 2019 or later
- Study period:
 - 2015 2016: 2 years before the intervention group received their award
 - 2017 2018: 2 years following the intervention group receiving their award
- Characteristics of interest
 - *Changes* in publication output and collaborations

Control Group

Nodes: individual authors

- Color: investigator group
- Size: increase in publication output from [2016/2017] to [2018/2019]

Edges: author collaboration

- Orange: increased intra-group output
- Blue: increased inter-group output

- Nodes: authors with decreased or stable collaborations not shown.
- Edges: reductions in collaborations not shown.

Control Group

Nodes: individual authors

- Color: investigator group
- Size: increase in publication output from [2016/2017] to [2018/2019]

Edges: author collaboration

- Orange: increased intra-group output
- Blue: increased inter-group output

- Nodes: authors with decreased or stable collaborations not shown.
- Edges: reductions in collaborations not shown.

Control Group

Nodes: individual authors

- Color: investigator group
- Size: increase in publication output from [2016/2017] to [2018/2019]

Edges: author collaboration

- Orange: increased intra-group output
- Blue: increased inter-group output

- Nodes: authors with decreased or stable collaborations not shown.
- Edges: reductions in collaborations not shown.

Control Group

Nodes: individual authors

- Color: investigator group
- Size: increase in publication output from [2016/2017] to [2018/2019]

Edges: author collaboration

- Orange: increased intra-group output
- Blue: increased inter-group output

- Nodes: authors with decreased or stable collaborations not shown.
- Edges: reductions in collaborations not shown.

Intervention Group

Nodes: individual authors

- Color: investigator group
- Size: increase in publication output from [2016/2017] to [2018/2019]

Edges: author collaboration

- Orange: increased intra-group output
- Blue: increased inter-group output

- Nodes: authors with decreased or stable collaborations not shown.
- Edges: reductions in collaborations not shown.

Intervention Group

Nodes: individual authors

- Color: investigator group
- Size: increase in publication output from [2016/2017] to [2018/2019]

Edges: author collaboration

- Orange: increased intra-group output
- Blue: increased inter-group output

- Nodes: authors with decreased or stable collaborations not shown.
- Edges: reductions in collaborations not shown.

Intervention Group

Nodes: individual authors

- Color: investigator group
- Size: increase in publication output from [2016/2017] to [2018/2019]

Edges: author collaboration

- Orange: increased intra-group output
- Blue: increased inter-group output

- Nodes: authors with decreased or stable collaborations not shown.
- Edges: reductions in collaborations not shown.

Next steps are to develop user interface to allow data exploration

Specifically, basic search functionality, graph representation, and group comparison

Contact Information

Mohammad Ghassemi, PhD mohammad.ghassemi@nih.gov

