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Human Augmentation and Al Lab

develop tools and systems that combine human and

machine intelligence (A.l.) to solve problems that

neither humans nor machines can solve as —
effectively alone. More specifically, we develop new IIIII
theoretical knowledge and practical tools for

Augmented Intelligence (A-l): the enhancement of

individual or collective cognitive function through the

use of technology and social/environmental factors.




Data scholar project supports mission of the BRAIN Initiative
BRAIN supports technologies that promote a dynamic understanding of the brain

Deliver a functional proof-of-concept of the “BRAIN
initiative Workspace to ORganize the Knowledge
Space” platform (“BRAIN WORKS” hereafter) — a tool
for the discovery of more comprehensive theories of
brain function through knowledge integration.



BRAINWORKS will support discovery of new brain theories

Discovery through integration of multi-modal, multi-scale brain data and knowledge
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Brain Data is Heterogeneous: exists
in multiple modalities, scales and levels of
resolution. The heterogeneity of brain data
requires thoughtful approaches to data
storage, analysis and representation.

Discovery Requires Integration: next
generation brain theories require a holistic
approach to the brain where the plurality of
contexts that impact brain structure and
function are accounted for. v

(61 Brain Data 3

Data Science is Pivotal: by automating
tasks, augmenting investigator capabilities
we may assist with the discovery of holistic
theories of brain function, and definition of
new research horizons.
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Discovery Requires Integration: next

generation brain theories require a holistic Brain Research
approach to the brain where the plurality of

contexts that impact brain structure and

function are accounted for.
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Discovery Requires Integration: next
generation brain theories require a holistic
approach to the brain where the plurality of
contexts that impact brain structure and
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BRAINWORKS will support discovery of new brain theories

Discovery through integration of multi-modal, multi-scale brain data and knowledge

environmental EEMOmIC cellular

VA N % -'#:ﬁ-_

Tt

Brain Research

Data Science is Pivotal: by automating
tasks and augmenting investigator capabilities
we may assist with the discovery of holistic
theories of brain function and define new
research horizons.
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BRAINWORKS converts scientific papers into knowledge graphs

Allows for exploration of scientific literature, and integration of findings across papers

BRAINWORKS: is an web application being developed in 2021 IV.Ioti.vation: Neuroscience theorigs and kn.owled.ge are
that uses Al to organize the neuroscience literature as an distributed across a complex, rapidly evolving scientific

intuitive and interactive knowledge graph. landscape that no one person can fully master.
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Project developed in five phases over a twelve-month period

Initial efforts focus on data preparation transitioning to outcome generation and value demonstration.

1. Specification
i January, 2021

1.1 Define value
1.2 Define outcomes

1.3 Define Foundations

: 2. Data to Information : 3. Algorithms and Comms.  : 4. Augmentation . 5. Value
. February—May, 2021 i June—August, 2021 :  September— November, 2021 i  December, 2021

Algorithms

autormato”
Information Augmentation

DisCOVery

Communications
2.1 Data characterization 3.1 Automation outcomes 4.1 Augmentation outcomes 5.1 Demonstration
2.2 Data centralization 3.2 Communication outcomes 4.2 Integration of novel data 5.2 Documentation
2.3 Data cleansing 3.3 Performance Evaluation 4.3 Performance Evaluation 5.3 Hand-off

.............................................................................................................................................................................................................................................................



To start, we spoke with several internal and external experts

Definition of the value, data science outcomes, and required foundations

Requirements captured by synthesizing needs of NIH & Scientific community.

1.1 Define value
1.2 Define culcomes

1.3 Define Foundations
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Our next step was to collect data to build the knowledge graph

We focused on data cleansing, characterization, and centralization

1. Specification 2. Data to Information ;
© o January, 2021 . February - May, 2021

Information

Collect data to enable the platform realization.

1.1 Define value 2.1 Data characlerization
1.2 Define outcomes 2.2 Data collect |
1.3 Define Foundations 2.3 Data centralization



Combined data provides view of science in more complete context
Unites information on grants, papers, topics, authors, institutions, and patents

Papers + Cited Papers studied
'"?h? hﬂ EaEmssEmEEE® "‘9.5 M —_—
(1980 —2020)

MeSH Topics

~145 K

(1788 —2020)

authored

NIH Projects [y Scientists*

> S500Bn ~5 M

27 M
(1980 — 2020)

affiliated

Institutions invented Patents
~100 K 32 K

* Asquimed same pame at different indtitution are differant



Now we are developing tools to analyze and visualize the data

Specifically, we are focusing on NLP processing of documents, and dynamic networks

1. Specification 2. Data to Information 3, Algorithms and Comms.
- January, 2021 . Februory - May, 2021 : June - August, 2021 "

InfRmaKon Generate Dynamic Networks
using the collected data

1.1 Define value i 2.1 Data characterization : 3.1 Automation outcomes :
4.2 Define oulcomes 2.2 Dala collect ¢ 3.2 Communication outcomes

19 Tl Feksnditions 2.3 Data centralization : 3.3 Performance Evaluation



Publication topic graph
of BRAIN awardees
(2014 - 2020)

Nodes: topics in papers
* Size: number of papers published

Edges: topic co-occurrence in papers
e Color: NIH BRAIN Team
e Gray: increased inter-group output

Exclusion Criteria:
e Edges: only rank 1 edges are shown.
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Co-occurrence of topics in publications provides research trends

Trends in ‘Neuroplasticity’ research may be understood by topics that covary with it
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Co-occurrence of topics in publications provides research trends
Trends in ‘Neuroplasticity’ research may be understood by topics that covary with it
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Publication topic graph
of BRAIN awardees
(2014 - 2020)

Nodes: topics in papers
* Size: number of papers published

Edges: topic co-occurrence in papers
e Color: NIH BRAIN Team
e Gray: increased inter-group output

Exclusion Criteria:
e Edges: only rank 1 edges are shown.
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How do collaborative projects impact author networks and paper



Changes in Neuroscience
collaborations (2015 - 2019)

Control Group

Nodes: individual authors
* Color: investigator group

* Size: increase in publication output
from [2016/2017] to [2018/2019]

Edges: author collaboration
* Orange: increased intra-group output
* Blue: increased inter-group output

Exclusion Criteria:

* Nodes: authors with decreased or
stable collaborations not shown.

* Edges: reductions in collaborations not
shown.
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Next steps are to develop user interface to allow data exploration

Specifically, basic search functionality, graph representation, and group comparison

1. Specification . 2. Data to Information 3. Algorithms and Comms. 4. Augmentation
- danuary, 2021 - February— May, 2021 - June- August, 2021 | September - November, 2021

Algorithms

Information Augmentation

.
L

=g [P W

1.1 Define value : 2.1 Data characterization | 3.1 Automation outcomes 4.1 Augmentation outcomes
1.2 Define outcomes : 2.2 Data collect | 3.2 Communication outcomes 4.2 Integration of novel data |
1.3 Define Foundations 2.3 Data centralization 3.3 Performance Evaluation | 4.3 Performance Evaluation |
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Contact Information

Mohammad Ghassemi, PhD
mohammad.ghassemi@nih.gov
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