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Agenda

• Introduction
• Initial Exploration of Geometry
• Fluid Properties
• Shear Stresses
• Model Validation
• Conclusion and Next Generation Design
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What is the SMART Platform?

• Sample Microenvironment from Resected Metastatic Tumors
• Purpose

• Maintain resected tumors ex vivo
• Allow examination of tumor microenvironment
• Allow drug testing
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Exploded View
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System Diagram
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Study Goals

1. Examine flow patterns
• Flow homogeneity

2. Examine shear stresses on tissue
• Magnitude
• Distribution
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Initial Exploration
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Initial Exploration

• Crossflow Holes have little effect on flow
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Initial Exploration

• Membrane presence dramatically changes flow patterns
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Initial Exploration

• Membrane flap length has no effect on membrane shear stress
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Fluid Properties
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Matching Simulation Conditions

Initial Exploration Conditions
• Water
• 30 mL/min

Real-World Conditions
• Custom perfusate
• 15.5 mL/min
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Inlet
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Fluid Affects Flow Patterns
Top Cross Section through Membrane Sutures – Velocity 
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Fluid Affects Shear Stress
Membrane Bottom Cross Section – Shear Stress
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SMART Platform Fluid

• Plasma (13mL)
• Dextrose (260uL of 5%)
• Insulin (130uL of 100u/mL)
• Glutathione (130uL of 100mM)
• Anti-anti (130uL)
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Modeling the Fluid
Sh

ea
r S

tr
es

s

Vi
sc

os
ity

Shear Rate Shear Rate

Image from polymerdatabase.com

Water

Water

Blood

Blood

16



Modeling Plasma

• Approximately 92% water
• Brust et al. (2013) found blood plasma is viscoelastic in elongational 

flows
• Varchanis et al. (2018) found that elastic nature of plasma dominates 

in flows with high shear and high extensional rates
• Characteristic of microvasculature

• Behavior attributed to proteins
• Poon (2020, BioRxiv preprint) notes that culture media with added proteins is 

also shear thinning
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A Newtonian Plasma Model

• Later measured density of perfusate to be 1.012 g/cm3

Water Newtonian Plasma
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Name 

Comments 

Density 

Dyn a mic viscosity 

specific heat (Cp) 

Therma l conductivity 

Cavitatio n effect

Radiation n pro perties

~ National Institutes of Health lliilll'J' Turning Discovery Into Health 

ater 

Properties of Waterare taken on th e Saturation line at T<0.9Tc 

(Table)

(Table)

(Table)  

(Table) 

0 
□ 

------------► 

Name 

Co mments 

Plasma (N ewton ian ) 

Density 1022.15 kg/m^3 

Dynamic v iscosity 0.100161 Pa*s 

Specific h ea.t (Cp) 3930 J/(kg*K) 

Thermal conductivity 0.001365 W/(m*K) 

Cav itation effect D 
Rad iation properties D 



Experimental Validation of Flow

19



Flow Visualization Experimental Setup
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Preliminary results show similar patterns



Shear Stress
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Physiological shear stress is difficult to 
determine
• Peritoneal cavity shear stresses have not been measured directly
• Hyler et al. (2018) estimate maximum physiological shear values do 

not exceed 0.5 Pa
• Calculate shear stresses in their model to range from 0.013 Pa to 0.032 Pa
• Note that shear stress at these levels effect healthy and cancerous tissue 

behavior

• Ip et al. (2016) claim physiological shear stress is below 0.01 Pa
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Maximum Shear Stress – A Parametric Study

• Find angle that provides maximum 
value of peak shear stress across 
bottom of membrane

• Iterative process
• Values between 0° and 45°
• Narrow window to steps of 

approximately 0.3°
• Tolerances

• Manufacturing tolerance 
approximately 50-100µm

• Notch for keeping lid in place allows 
approximately 0.3° of rotation to 
either side

Inlet Outlet

24



Maximum Shear Stress – A Parametric Study

0.046

0.047

0.048

0.049

0.05

0.051

0.052

0.053

22.5 23 23.5 24 24.5 25 25.5 26M
ax

im
um

 S
he

ar
 S

tr
es

s o
n 

M
em

br
an

e 
[P

a]

Angle of Rotation [°]

Maximum Shear Stress on Membrane as a Function of Holder Angle 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35 40 45 50
M

ax
im

um
 S

he
ar

 S
tr

es
s o

n 
M

em
br

an
e 

[P
a]

Angle of Rotation [°]

Maximum Shear Stress on Membrane as a 
Function of Holder Angle 

25



Calculated Shear Stress
Membrane Bottom Cross Section – Shear Stress
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Conclusion and Next Generation
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Next Generation SMART Platform

• Linear design for homogenous flow and shear stresses
• Preliminary modeling indicates shear stresses below 0.01 Pa
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Conclusions

• Constructed a Newtonian model of plasma as an approximation for 
SMART platform perfusate

• Computationally modeled flow patterns and shear stresses
• Testing underway to validate computational models
• Current design does not produce homogenous flow patterns
• Current design does not produce homogenous shear stresses

• Testing underway to determine if shear stresses are within a physiologically relevant 
range

• Proposed alternative design to meet homogenous flow and shear 
stress requirements
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Effect of Fluid
Lengthwise Cross Section through Center – Velocity 
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Effect of Fluid
Lengthwise Cross Section through Holders – Velocity 
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Effect of Fluid
Widthwise Cross Section through Center – Velocity 
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Effect of Fluid
Widthwise Cross Section through Holders – Velocity 



Inlet

Effect of Fluid
Top Cross Section through Holder Holes – Velocity 

Outlet



Effect of Fluid
Top Cross Section through Membrane Sutures – Velocity 
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Effect of Fluid
Membrane Bottom Cross Section – Shear Stress
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Effect of Fluid
Membrane Top Cross Section – Shear Stress
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