Increasing Access to Hematological Cancer Care for the Middle of the Pyramid with a Microscopy-Based Approach

Shivang R. Dave, PhD Jason Tucker-Schwartz, PhD Elfar Adalsteinsson, PhD (PI)

NIH POCTRN Symposium June 9th, 2016

Intellectual property filed and owned by:

- Innovation, Leadership, Impact
- Previous work (3 patent applications, SRD)
- Work funded by this grant (1 patent application, SRD, JTS)

IP portfolio was licensed by: SRD provides technical advice to:

Leukemia & lymphoma are common and varied Prevalence: 1.2M Incidence: 171K/year Mortality: >58k/year

Need to distinguish cell type and stage

http://www.cancer.gov/images/cdr/live/CDR526538.jpg Leukemia & Lymphoma Society. MIT CFTCC CELL | 3 Fact 2014; National Cancer Network. Guidelines. 2014

Outcomes have improved

Generally due to better <u>access</u>, <u>detection</u>, <u>classification</u>, and treatments

Figure 2. Source: SEER (Surveillance, Epidemiology and End Results) Cancer Statistics Review, 1975-2011. National Cancer Institute; 2015.

*The difference in rates between 1975-1977 and 2005-2011 is statistically significant (*P*<.05).

¹Survival rate among whites (only data available).

Cell classification with flow cytometry

Features

- High-throughput
- Quantitative
- Multi-parameter

Impact (USA)

- >1.2M L/L samples/year
- >\$700M clinical testing

Economics of flow cytometry impacts access particularly <u>access</u>, <u>detection</u>, and <u>classification</u>

Mobs et. Al. (2014) CD3-Positive B Cells: A Storage-Dependent Phenomenon. PLoS ONE 9(10): e110138.

Hematology. Clinical Chemistry 46:8(B) 1221E1229, 2000 Amer. Hospital Assoc. 2011 Statistics MIT CFTCC CELL | 6 Ekong Immunolog. Methods 164 1993

High-throughput classification drives complexity serial cell analysis and multi-parameter detection reduce access

Laser illumination

Fluidics System: One-by-one cell analysis

Multichannel (8+) signal detection

Innovation, Leadership, Impact

Shapiro, "Cellular Astronomy" – a foreseeable future in cytometry. MIT CFTCC CELL | 7 2004

Microscopy: democratize flow data? replacing the complexity and removing the flow

Laser illumination

Fluidics System: serial cell analysis

Multichannel (8+) signal detection

Advances in illuminators, sensors, and image processing enable Cost-effective, sensitive, high throughput, and quantitative imaging

Stable, affordable, high power LEDs

Flow-less imaging sample

Single detector

Innovation, Leadership, Impact

Shapiro, "Cellular Astronomy" – a foreseeable future in cytometry. MIT CFTCC CELL | 8 2004

Traditional microscopy

Cellular astronomy

Shapiro, "Cellular Astronomy" – a foreseeable future in cytometry. MIT CFTCC CELL | 9 2004

Traditional microscopy

Cellular astronomy

Traditional microscopy

Cellular astronomy

Traditional microscopy

Cellular astronomy

Traditional microscopy

Traditional microscopy

Cellular astronomy

Cost-effective, potential for high-throughput, but can it be quantitative?

Steps towards cell astronomy to increase access

Remaining bottleneck

High-density Sample Preparation

Low-magnification epi-fluorescence

Massachusetts Institute of Technology Innovation, Leadership, Impact

Remaining step towards cell astronomy

Innovation, Leadership, Impact

HOIM uses modular illumination hardware

Compatible with a broad set of microscopes

Innovation, Leadership, Impact

HOIM recapitulates individual WBC populations using <u>sorted</u> stabilized human control WBCs

para el conocimiento

Massachusetts Institute of

CONSORTIUM

Innovation, Leadership, Impact

echnology

Sorted lymphocytes, monocytes, and granulocytes have distinguishable size and HOIM signal intensity

HOIM qualitatively resembles flow data adding together the data from <u>sorted</u> stabilized human control WBCs

Gating out RBCs with HOIM and fluorescence using <u>unsorted lysed</u> stabilized human control samples

HOIM size and intensity data can be obtained on unsorted lysed samples and used in clinical workflow to isolate WBC populations

Analyzing HOIM performance w/ manual gating using unsorted lysed stabilized human control samples

Innovation, Leadership, Impact

Lymphocyte population ratios correlate with the values supplied by the sample manufacturer (r² = 0.98)

Conclusions: Scatter-based WBC discrimination using HOIM and fitting in the cellular astronomy regime

- Detect and quantify scattering signals from cells at 4x magnification
- Accurately classify leukocytes into 3 subpopulations
- Accurately quantify 3 leukocyte subpopulations
- Outstanding concern:
 - Leukemia/lymphoma applications require >8 color fluorescence
 - Work underway by licensor of the IP

Future directions and unpublished work

- Dynamic imaging of leukocytes / RBCs
- Different substrates
- Effects of cell packing fraction

Outcomes & broader impacts

<u>CFTCC grant</u>

- Technical proof-of-concept
- Manuscript (submitted)
- Provisional patent application

• Licensing and commercial development underway

Translation of a complete cell astronomy platform

- 5 year effort to develop and de-risk the whole system
- SSC was the final step to compel an industrial partner to license
- Development in industry moves us closer to clinical impact

Acknowledgements – Team Cell

Innovation, Leadership, Impact

Gray Lab for space

Shivang R. Dave, PhD Jason Tucker-Schwartz, PhD Prof. Elfar Adalsteinsson, PhD (PI)

Prof. Norberto Malpica, PhD Esteban Pardo

Massachusetts

Institute of

Technology

Madrid-MIT

CONSORTIUM

m+visi**o**r

Innovation, Leadership, Impact

nun dad de Madrid

fundación

madriod

para el conocimiento

Prof. Peter Bryant, PhD

Daniel Luk, MBA

Prof. Ben Vakoc, PhD

Peter Hansen, PhD Petra Krauledat, PhD

