

Use of Stem Cell-derived Cardiomyocytes and Real Time Impedance – based Measurements to Predict Drug-Induced QT prolongation and Arrhythmia Kyle Kolaja

March 7th, 2014

Outline of Talk

- Background on the Project
- Device
- Cells
- Assay
- Contract Providers
- Conclusions

Project Summary

•

Overview of Technology

- A three party-development project
 - Roche Applied Sciences who at the time had licensed ACEA xCelligence impedance products
 - Cellular Dynamics International
 - Roche Pharma

- Robust, reproducible in vitro assay for arrhythmia
 - Widely cited paper (48x as 2/28/14)
 - Adopted by numerous pharma
 - Offered at several CROs
 - Part of a larger effort to change TQT (E14) and in vitro safety pharmacology guidance (ICH7B)

Advance Access publication June 20, 2011

Estimating the Risk of Drug-Induced Proarrhythmia Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

Cardiovascular Safety Pharmacology

- ~10 drugs pulled from market based on torsades de pointe
- Regulatory Guidance documents ICH7A and 7B proscribe a new host of cardiovascular safety approaches
 - hERG screening ex vivo preps in vivo animal models ECGs Thorough QTc trials
- Two consequences
 - no drug induced torsades
 - a lot of beneficial drugs not marketed

Early screening relies heavily on hERG

- hERG block ≠ QT prolongation
- hERG block ≠ arrhythmia
- QT prolongation ≠ arrhythmia
- Arrhythmia can be independent of hERG

Cardiovascular safety and regulations could be better

• HESI and CIPA

Revolution dawning in cardiotoxicity testing Sterreelite has by and conjugational modelling offers the promise of reducing the current barden of card benocity assessment.

The Genesis of the Project

5

xCELLigence RTCA-Cardio System

- Real time, non-destructive, continuous data
- Monitors cardiotoxicity and cardiomyocyte beating
- Highly sensitive
- Simultaneously assesses
 - cell viability
 - properties related to contraction
- 96 well format
- Enables short term (msec) and long term (days or
- weeks) measurements in a single assay
- Why Impedance vs MEA?
 - Collaboration with Roche Applied Sciences
 - At the time, higher throughput (96 vs 6)
 - Treat and collect data for days vs hours

Impedance Detection of Cardiomyocyte Beating

Confirmation of Cardiomyocyte Nature

Ventricular-like

hIPs Cardiomyocytes

Cellular Dynamics

International

Express major cardiac proteins Exhibit cardiac action potential wave forms Functionally active cardiac channels Respond as expected to channel blockers

Atrial-like

Nodal-like

APs (n=59)	Interval (sec)	MDP (mV)	Peak (mV)	Amp (mV)	dV/dt _{max} (V/sec)	APD10 (msec)	APD30 (msec)	APD90 (msec)	APD30-40 /APD70-80
Atrial-like (n=13)	1.2±0.2	-73.5±1.5	26.7±1.4	100.2±2.1	26.2±3.9	60.8±5.5	123.1±10.3	286.2±21.2	1.1±0.1
Nodal-like (n=14)	1.0±0.1	-60.1±2.4	19.5±2.0	79.6±2.9	5.5±0.4	65.3±18.4	111.8±15.9	254.7±20.5	1.0±0.1
Ventricular- like (n=32)	1.7±0.1	-75.6±1.2	28.3±1.0	104.0±1.1	27.8±4.8	74.1±4.8	180.0±10.7	414.7±21.8	2.5±0.2

Drug-induced changes in beat rate Indication of <u>functional</u> cardiac ion channels

Does impedance detect the physical beating or the electrical changes?

Human Cardiomyocytes Arrhythmia Risk (hCAR) Model iPSC derived human cardiomyocytes

IB20= lowest tested concentration resulting in 20% irregular beats

In vitro Detection of Arrhythmias with Human iPSC-Derived Cardiomyocytes

Functional Rescue of Drug-induced Arrhythmia

hCAR Initial Assay Validation: determine in vitro to *in vivo correlation*

- •12 Pro-arrhythmic
- 11 Non-arrhythmic
- IB20 30 uM
 - One False Positive
 - No False Negatives

 IB20= lowest tested concentration resulting in 20% irregular beats

Drug	IB20 (μM)	hERG	QT	Clinical arrhythmia	
Dofetilide	0.003	(+)	(+)	(+)	
Ouabain	0.03	(-)	(-)	(+)	
Aconitine	0.03	(-)	(-)	(+)	
Cisapride	0.03	(+)	(+)	(+)	
E-4031	0.03	(+)	(+)	(+)	
Astemizole	0.03	(+)	(+)	(+)	
Terfenadine	0.3	(+)	(+)	(+)	
Flecainide	1	(+)	(+)	(+)	
Alfuzosin	1	(-)	(+)	(-)	
Thioridazine	3	(+)	(+)	(+)	
Quinidine	10	(+)	(+)	(+)	
Erythromycin	30	(+)	(+)	(+)	
Sotalol	30	(+)	(+)	(+)	
Fluoxetine	>30	(+)	(+)	(-)	
Verapamil	>30	(+)	(±)	(-)	
Moxifloxacin	>100	(+)	(+)	(+)	
Amiodarone	>100	(+)	(+)	(<u>+</u>)	
Ranolazine	>100	(+)	(+)	(-)	
Captopril	>100	(-)	(-)	(-)	
Rofecoxib	>100	(-)	(-)	(-)	
Amoxicillin	>1000	(-)	(-)	(-)	
Aspirin	>1000	(-)	(-)	(-)	
Nifedipine	>3	(-)	(-)	(-)	

Guo et al. Toxicol Sci. 2011 Sep;123(1):281-9.

hCAR Assay Validation: Onset time of IB20 varies

- Rapid sustained effect of E-4031 on arrhythmia
- Terfenadine with arrest of beating and late onset arrhythmia
- Longer term assessment improves accuracy

hCAR Second Paper Goals

Expand the dataset

- More positives and negatives, toxicants, hERG trafficking inhibitors
- Fine tune the prediction
 - delayed beat rate in vitro predicting QT prolongation
 - atypical beats in vitro predicting arrhythmia
 - Examine onset time of IB20
- Improve the metrics
 - IB20 as well as threshold cutoffs
 - In vitro efficacy benchmarks
- Investigate potential confounding effects of cytotoxicity

Liang Guo,¹ Luke Coyle, Rory M. C. Abrams,² Raymond Kemper,³ Eric T. Chiao,⁴ and Kyle L. Kolaja^{5,4}

A MODEL FOR CARDIAC ARRHYTHMIA PREDICTION

CELLUIAr **Dynamics** international

Human Cardiomyocytes Arrhythmia Risk (hCAR) Model Next Round of Validation

(H)

(-) I

(H)

(+1)

(H)

(+1)

(+)

(H)

(+1)

(H)

(-)

(+1)

(H)

(+)

(•)

(+1)

(-) I

(H)

(±)

(H)

(H)

(-)

(H)

(-) I

(+1

(-) I

(-)

(-)

 (\cdot)

(-)

(-)

(-) I (+)

(-) I

(-) I

(-) I

(-) I

(H)

(H)

(H)

(H)

(-)

(-1

(-)

(-)

(±1)

(+1)

(-)

(H) (-) (-)

(+1

(+)°

(+1

 (\cdot) (±)

(-)

(-1)

(H)

(-1)

(-1

(-)

(-1)

(-1

(±1 (-)

(-)

(-) (-)

(-)

(-)

(-) (+)

(-1

(-1

(-1

(-)

(-1

(H)

(-1)

Drug	$C_{eff}(\PiM)$	lB ₂₀ (μM)	L hERG	ter	TdP			in v	ivo EC	ю.	1	
Digitosin	33	0.003	(-f	(-)	(+)*	- j2f					ļ_ hE	RG
Dofetillde	6	0.003	(+)	(+)	(+)		0/0	solporin A	1,45	ă M	100	1-1
Digosin	3	0.01	(-1	(-)	(+ m	IV	Dim	ocarrie (r. v.)	36,0		100	
Ousbain	170	0.01	64	6	1+ 12	14	Pilli		6.00	• •	100	
Aconitine	77	0.03	(-)	(-)	1+ 12	1.2	NIN	dinina	6,00	0	-9 -9	6
A stemi zole	8	0.03	(+)	(+)	(+)	- 27	0 m	ittotulos	793		-20	6
F-4031	13	0.03	(+)	(+)	61	3	Ber	oddii	2.29	8 3	-30	(4)
Pimozide	217	0.1	(+)	(+1)	(+1	3	Cont of	iri zine	200		-30	6
Sernidole	3 18	0.1	(+)	(+)	(+1	T.	ah	en zoline	2 16	8 3	-30	(+)
Claspride	129	0.3	(4)	61	6.1	- 0	Dal	tamoridine 1	493		-30	60
Caldaramyein	16 200	0.3	1.1	(-)	64.70	0	Dut	ia zem	5.52		-30	6
danubiah Manubiah	198	0.5	- 60	6	6.2	- Č	Dip	ine niny dra mine	157		-30	6
Terfensdine	30.0	0.5	(4)	(4)	6.1	- 0	Ru	oroursell	4,61	3)	-30	(-)
Alfuzorin	50	1	6	61	6	0	Ru	o se time	485	1	-30	(+)
Dobutamine	2 2 1 9	1	(4)	60	- 60	- *	in ip	oramine	1.07	0 2	-30	(+)
Dotorubiein	15 3 44	1	(-)	(+)	6.70	0	Ket	tocorra zole	17.6	S9 >	-30	(+)
Becaldide	1931	1	(+)	(+1)	61	in	LOF	atadine	23	;	-30	(-)
Pentami dine	3 18 1		18	61	6.1		NIT	endipine	150	1 3	-30	(-)
Teacine	100				101	-10	Ola	nzipine	74	3	-30	(-)
umphotedain B	29 2 12	2	(-)	(4)	6.20	in	Roi	lig i ta zone	1,67	3)	-30	(-)
Amoniosinani D	12 122	2	14	61	6.1	12	Тго	glitazone	6,38	7 >	-30	(-)
Alterne moside	12,102			(*)	- (*)	-10	Vег	apam I	8 15	1	-30	(+)
Cio zapine	1	3	1-1	1+1	111	- 10	Ace	tamidopinenol	130,0	00 ×	10.0	(-)
MITO SALITO DI O	3,311	3	(-)	(•)	1+ 5	- Ĕ	Ald	Idem	284	1 ×	10.0	(-)
Prenylamine	70	3	(-)	(+)	(+)	-10	Аm	loctarone	3, 87	4 >	100	(+)
Sunitinib	253	3	(+)	(+)	(+)	- 54	a te		1.28	4	10.0	60
Thiorids zine	1,781	3	[+]	[+]	[+]	31	~	stoodi	7,40	· ·	100	6
Zimelidine	328	3	(+)	(±)	(±.)	-10	Car		2,45	• •	100	0
Ajmaline (I.v.)	10 5	10	(+)	(+)	(+)	- IO	COI	CINCINE	16	,	100	(-)
Chiorp rom a zine	2,630	10	(+)	(+)	(+)		C_{i}^{*}	lopito spitamic	ie 153,2	00 >	100	(-)
Clarithrom; cin	6,029	10	(+)	(+)	- (+) -	10	De r	ra 20 sane	13 6, 0	52 ×	10.0	(-)
Dantrolene	7,900	10	(-)	(-)	(-)	0	Les	olimendan	136	- ×	10.0	(-)
De sipramine	60 1	10	(+)	(+)	(+)	10	Мес	enimentre noirie	2	× 1	100	(-)
Epirubicin	16,036	10	(-)	(+)	(+ Y	10	Мо	sifios ac in	10.2	76 >	100	(+)
Ne 12 zodone	4,898	10	(+)	(+)	(-)	- 0	Nim	e Iulide	15,0	00 ×	10.0	 (-)
Phentolamine	100	10	(-)	(-)	(-)		Реп	noline	6,92	5 >	100	(-)
Quinidine	21,578	10	(+)	(+)	(+)	-01	Rot	Necosib	1,02	1 >	100	(-)
Ery throm yoin (i. v.)	34,064	30	(+)	(+)	(+)	0	Tole	саропе	21,9	59 >	100	(-)
Flu vot am ine	1,257	30	(+)	- (-)	(-)	IU.	Zalo	: Itabine	1 15		100	(-)
im a tinib	3,541	30	(-)	(+)	(-)	-10	Аm	osicilin	17,0	36 >	1000	- (-)
Metiletine	11,161	30	<u>(+)</u>	<u>[-]</u>	_ <u>[-]</u>	20	A ID	pirin	10,0	00 ×	1000	പറ
Ргоратепопе	4,82/	30		1+1	1.1	30	,	-	-	-	4	.9
Propranoioi (I. V.)	19.3	30	1-1	1+1	1-1	-00)	-	-	-	:	30
2013101	14,600	- 30		•	1+1	30	^					0
			21	>100		10	U	-	-	-	4	.0
			28	>100	>	10	0	-	-	-	4	.3
			29	>100	>	10	0	-	-	-	:	30
			30	>100	>	10	0	-	-	-	>:	300

83 Compounds

~82% -- arrhy. prediction >90% -- QT prediction

30 Internal Compounds

80% -- arrhy. prediction 95% -- QT prediction

Internal and External Validation

Assay

- Confirmation of effects using MEA
- Confirmation of dose response
- Multiple time points
- Cells
- Express relevant ion channels and are functionally similar
- Respond to known drug standards
- Assessment of lot to lot performance
- Assessment of interassay drug response

Publications

- Cross-site, cross-investigator correlation
- Industry Adoption
- CDI developed standard protocol
- Extensive lot to lot characterization
- Pharma and CROs have run internal assessments
- Unknown/Test Compound
- Inclusion of multiple dose and time points
- Inclusion of at least 1 positive control

CELLUIA Dynami internatio	r ics onal
xCELLige	iCell [®] Cardiomyocytes – nce RTCA Cardio System Application Protocol
Introduction	
ICell [®] Cardiomyocytes are hu cardiomyocytes that recapitul and pathophysiological chara their human origin, high purity Cardiomyocytes represent an biology in basic research and	man induced pluripotent stem cell-derived at the biochemical, electrophysiological, more claristics of native human cardiac mycostes. Due to 6, functional relevance, and ease of use, Cell coptimal in vitro test system for interrogating cardiac many areas of fung development.
The xCELLigence RTCA Can label-free platform that utilizer to indirectly measure cardiom (Cell Cardiomyooytes can be durations, thus enabling mean effects. Together, Cell Cardio excellent platform for is vitro cardiomyocyte physiology.	do System (RTCA Cardo system) is a non-invasive, simpleatron changes across the cardiac monolayer poper vakabity, controlled, and exiterizat advety, cultured and maritated on an E-Nate for extended summert of acutar and sub-acuta drug-valcand onycoptes and the RTCA Cardo system offer an accreening of compound effects on human
This Application Protocol desite the RTCA Cardio system and data accusibilities and analysis	cribes how to handle iCell Cardiomyocytes for use on provides basic instructions for compound treatments,

Cellular P	Cell Physiol Blochem 2012:29:819-832
and I	Biochemistry
<i>In vitro</i>	Model for Assessing Arrhythmogeni
Propert	ties of Drugs Based on High-resolutio
Impeda	nce Measurements
Filomain	Nguemo ¹ , Tomo Šarić ¹ , Kurt Pfannkuche ¹ , Manfre
Watzele ² ,	Michael Reppel ^{1*} and Jürgen Hescheler ¹
	Journal of Pharmacological and
ELSEVIER	Toxicological Methods Volume 68, Issue 1, July-August 2013, Pages 97-111 10th Annual Focused Issue on Methods in Safety Pharmacology

Impedance-Based Detection of Beating Rhythm and Proarrhythmic Effects of Compounds

on Stem Cell-Derived Cardiomyocytes

Volume 49, 15 November 2013, Pages 9-13

A cardiomyocyte-based biosensor for antiarrhythmic drug evaluation by simultaneously monitoring cell growth and beating Tianxing Wang^{a, b}, Ning Hu^a, Jiayue Cao^a, Jieying Wu^b, Kaiqi Su^a, Ping Wang^{a, b}.

Functional Cardiotoxicity

Profiling and Screening

Using the xCELLigence

8

- Highly predictive in vitro model to identifies compounds that cause QT prolongation and/or arrhythmia clinically
 - High through-put, real-time, non-destructive
 - Minimal compound requirements, fast turn-around, low technical rigor
 - Longer experiments identify indirect arrhythmia mechanisms
- Provides context to hERG inhibition values
- Verification/Validation of technology and cell performance
 - Across sites
 - Across labs
 - Across compounds
 - Across lots of cells

