Nature and Scale of Radiation Risk

William R. Hendee, PhD
Distinguished Professor
Radiology, Radiation Oncology, Biophysics, Institute for Health Society
Medical College of Wisconsin

Professor of Biomedical Engineering
Marquette University

Adjunct Professor
Electrical Engineering
University of Wisconsin-Milwaukee

Adjunct Professor of Radiology
University of New Mexico

Adjunct Professor of Radiology
University of Colorado
2010 NYT Articles on Risks of Medical Imaging

- Radiation Worries for Children in Dentists’ Chairs – November 23, 2010
- Radiation, Risks Are Focus of Breast Screening Studies – Aug 24, 2010
- Scientists Say F.D.A. Ignored Radiation Warnings – Mar 29, 2010
- F.D.A. to Increase Oversight of Medical Radiation – Feb 10, 2010
- They Check the Medical Equipment, but Who Is Checking Up on Them? – Jan 27, 2010
Variable Doses of Radiation Raise Safety Concerns for CT Procedures

ScienceDaily (Dec. 15, 2009) — Radiation doses from common CT procedures vary widely and are higher than generally thought, raising concerns about increased risk for cancer, according to a new study led by UCSF imaging specialists.

15,000 will die from CT scans done in 1 year

Scans have higher levels of radiation than thought, researchers say

11:00 a.m. PT, Mon., Dec. 14, 2009

CHICAGO - Radiation from CT scans done in 2007 will cause 29,000 cancers and kill nearly 15,000 Americans, researchers said Monday.

The findings, published in the Archives of Internal Medicine, add to mounting evidence that Americans are overexposed to radiation from diagnostic tests, especially from a specialized kind of X-ray called a computed tomography, or CT, scan.

After Stroke Scans, Patients Face Serious Health Risks

When Alan Reyes’s hair suddenly fell out in a freakish band extending his head, he was not the only one worried about his health. His co-workers at a shipping company avoided him, and his boss sent him home, fearing he had a contagious disease.

Only later would Mr. Reyes learn what had caused him so much physical and emotional grief: he had received a radiation overdose during a test for a stroke at a hospital in Glendale, Calif.

Other patients getting the procedure, called a CT brain perfusion scan, were being overdosed, too — 37 of them just up the freeway at Providence Saint Joseph Medical Center in Burbank, 269 more at the renowned Cedars-Sinai Medical Center in Los Angeles and dozens more at a hospital in Huntsville, Ala.

The overdoses, which began to emerge late last summer, set off an investigation by the Food and Drug Administration into why patients tested with this complex yet lightly regulated technology were bombarded with excessive radiation. After 10 months, the agency has yet to provide a final report on what it found.

Debating the danger: Are airport scanners safe?

Palm Beach Post, Nov 23, 2010

Arch Int Med, 2009
Number of CT Procedures in US

IMV Benchmark Reports on CT

2007: 68.7 million CT
Categories of CT Procedures (62.0 million in 2006)

- Brain: 20.2%
- Pelvic & Abdominal: 29.7%
- Chest: 16.1%
- Head & Neck: 8.4%
- Spine: 6.6%
- Guided Procedures: 3.7%
- Lower Extremities: 2.7%
- Upper Extremities: 2.6%
- Calcium Scoring: 0.8%
- Other Cardiac: 0.5%
- Virtual CT Colonography: 0.3%
- Whole Body Screening: 0.3%
- Other: 1.1%

HCAP: ~80% of all CT procedures

IMV 2006
Radiation Exposure to US Population from all Sources

US 1982 (NCRP 93)
- Background 83%
- Consumer products 2%
- Medical 15%
- Occupation 0.3%

Medical 0.54 mSv per capita
Total 3.6 mSv per capita

US 2006 (NCRP 160)
- Background 50%
- Natural (3.1 mSv)
- CT 24% (1.5 mSv)
- Nuclear Medicine 13% (0.8 mSv)
- Radiography 5% (0.3 mSv)
- Interventional 6% (0.4 mSv)
- Other 3% (0.1 mSv)

Medical 3.0 mSv per capita
Total 6.2 mSv per capita

NCRP 160 published March 2009
Per capita radiation dose from medicine has increased 560 percent.
Collective annual population dose from medicine has increased over 700 percent.

124,000 Person Sv \times 7.1 = 880,000 \text{ person-Sv}

1980 \quad 2006
Is there a cancer risk from CT?

A-bomb data show a statistically significant increase at > 50 mSv
Graph (left) illustrates the natural risk (solid red line) of dying from cancer for a Caucasian male as a function of age.

VERDUN F R et al. Radiographics 2008;28:1807-1816

©2008 by Radiological Society of North America
## Adult Effective Doses for Various CT Procedures

<table>
<thead>
<tr>
<th>Examination</th>
<th>Effective dose (mSv)</th>
<th>Range in literature (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>2</td>
<td>0.9 – 4.0</td>
</tr>
<tr>
<td>Neck</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>Chest</td>
<td>7</td>
<td>4.0 – 18.0</td>
</tr>
<tr>
<td>Chest for Pulmonary Embolism</td>
<td>15</td>
<td>13 – 40</td>
</tr>
<tr>
<td>Abdomen</td>
<td>8</td>
<td>3.5 – 25</td>
</tr>
<tr>
<td>Pelvis</td>
<td>6</td>
<td>3.3 – 10</td>
</tr>
<tr>
<td>Three-phase liver study</td>
<td>15</td>
<td>...</td>
</tr>
<tr>
<td>Spine</td>
<td>6</td>
<td>1.5 – 10</td>
</tr>
<tr>
<td>Coronary angiography</td>
<td>16</td>
<td>5.0 – 32</td>
</tr>
<tr>
<td>Calcium scoring</td>
<td>3</td>
<td>1.0 – 12</td>
</tr>
<tr>
<td>Virtual colonoscopy</td>
<td>10</td>
<td>4.0 – 13.2</td>
</tr>
</tbody>
</table>

CT Scans of Abdomen and Pelvis
Exam Distribution vs US Population*

~ 20% of population >55 years, receives >55% of CT scans

* LNEP 2003
BEIR VII ERR Model (Incidence)

NAS BEIR VII  Fig 12-1 A
What might the upper estimate of risks be?

- With assumptions of uniform population exposure and normal life expectancy etc.
  - Risk of fatal cancer from effective dose of 10 mSv from 1 CT or 1 nuclear medicine study is ~ 1/2000 or 0.05%
  - 60 million CTs annually in US might cause 30,000 fatal cancers
  - 20 million nuclear medicine exams annually in the US might cause 10,000 fatal cancers
What is wrong with the analysis on the previous slide?

- Organ vs. whole-body vs. effective dose
- Linear risk estimate (solid tumors)
- Age distribution of patients
- Overestimation of dose
- Benefits not considered
# Fetal Effects from Low-Level Radiation Exposure

<table>
<thead>
<tr>
<th>Effect</th>
<th>Most Sensitive Period after Conception (d)</th>
<th>Threshold Dose at Which an Effect Was Observed (mGy)</th>
<th>Absolute Incidence*</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Prenatal death              | 0–8                                        | Animal Studies: 50–100  
Postimplantation: 250  
Growth retardation: 8–56  
Organ malformation: 14–56  
Small head size: 14–105  
Severe mental retardation: 56–105  
Reduction of IQ: 56–105  
Childhood cancer: 0–77 (first trimester) | Human Studies: 10  
200  
ND  
250  
100  
ND  
ND  
100  | ND  
ND  
ND  
ND  
0.05%–0.10%  
0.04%‡  
0.017%§  | If the conceptus survives, it is thought to develop fully, with no radiation damage.  
Atomic bomb survivors who received ≥200 mGy were 2–3 cm shorter and 3 kg lighter than controls and had a head circumference 1 cm smaller.  
None  
About 25% of children with small head size were mentally retarded.  
No increase in absolute incidence was observed for exposure in the first 7 weeks or after the 25th week.  
Effects from a dose of 100 mGy or less were statistically unrecognizable. At 100 mGy or more, the IQ reduction was 0.025 points per milligray.  
Leukemia is the most common type of childhood cancer. |

## Probability of Birth with No Malformation and No Childhood Cancer

<table>
<thead>
<tr>
<th>Dose to Conceptus (mGy)</th>
<th>No Malformation (%)</th>
<th>No Childhood Cancer (%)</th>
<th>No Malformation and No Childhood Cancer (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>96.00</td>
<td>99.93</td>
<td>95.93</td>
</tr>
<tr>
<td>0.5</td>
<td>95.999</td>
<td>99.926</td>
<td>95.928</td>
</tr>
<tr>
<td>1.0</td>
<td>95.998</td>
<td>99.921</td>
<td>95.922</td>
</tr>
<tr>
<td>2.5</td>
<td>95.995</td>
<td>99.908</td>
<td>95.91</td>
</tr>
<tr>
<td>5.0</td>
<td>95.99</td>
<td>99.89</td>
<td>95.88</td>
</tr>
<tr>
<td>10.0</td>
<td>95.98</td>
<td>99.84</td>
<td>95.83</td>
</tr>
<tr>
<td>50.0</td>
<td>95.90</td>
<td>99.51</td>
<td>95.43</td>
</tr>
<tr>
<td>100.0</td>
<td>95.80</td>
<td>99.07</td>
<td>94.91</td>
</tr>
</tbody>
</table>

Estimated Conceptus Doses from Single CT Acquisition

<table>
<thead>
<tr>
<th>Examination</th>
<th>Dose Level</th>
<th>Typical Conceptus Dose (mGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra-abdominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head CT</td>
<td>Standard</td>
<td>0</td>
</tr>
<tr>
<td>Chest CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine</td>
<td>Standard</td>
<td>0.2</td>
</tr>
<tr>
<td>Pulmonary embolus</td>
<td>Standard</td>
<td>0.2</td>
</tr>
<tr>
<td>CT angiography of coronary arteries</td>
<td>Standard</td>
<td>0.1</td>
</tr>
<tr>
<td>Abdominal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdomen, routine</td>
<td>Standard</td>
<td>4</td>
</tr>
<tr>
<td>Abdomen/pelvis, routine</td>
<td>Standard</td>
<td>25</td>
</tr>
<tr>
<td>CT angiography of aorta (chest through pelvis)</td>
<td>Standard</td>
<td>34</td>
</tr>
<tr>
<td>Abdomen/pelvis, stone protocol*</td>
<td>Reduced</td>
<td>10</td>
</tr>
</tbody>
</table>

“Women should be counseled that x-ray exposure from a single diagnostic procedure does not result in harmful fetal effects. Specifically, exposure to less than 5 rad (50 mGy) has not been associated with an increase in fetal anomalies or pregnancy loss.”

American College of Obstetrics and Gynecology
CT Use for Acute Appendicitis

- Triad of migrating abdominal pain, RLQ abdominal pain, leukocytosis absent in 50%

- Before CT~ 15-20% of operations resulted in removal of a normal appendix

- CT accuracy 97% and now only 3% of operations yield normal appendix

- CT has a higher accuracy for alternative diagnoses

©F.A. Mettler, Jr., MD
Trauma

Head, neck, chest abdomen and pelvis can be scanned in 10 seconds

Many significant findings are seen such as brain hemorrhage, small pneumothoraces and liver lacerations which are difficult or impossible to see on plain x-rays
How can we put the risk of radiation exposure into perspective?
Inappropriate Comparison of Risks

- Risk of dying from an injury over lifetime = 4.5% [NSC]
- Risk of dying from radiation-induced cancer = 5.5%/Sv
- Risks are not comparable because
  - Risk factors have different timescale (latency)
  - Medical procedures have a benefit to weigh against risk
  - Different fear factors

© WRH (Jan., 2011)
### Comparison of adult exam dose to background radiation level

<table>
<thead>
<tr>
<th>Exam</th>
<th>Reference Level (time to receive equivalent background radiation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest X-Ray PA / LAT</td>
<td>2.4 days / 12 days</td>
</tr>
<tr>
<td>Mammography</td>
<td>1 ½ months</td>
</tr>
<tr>
<td>Abdomen / Pelvis X-ray</td>
<td>3 months</td>
</tr>
<tr>
<td>Head CT</td>
<td>8 months</td>
</tr>
<tr>
<td>Thyroid scan (Tc$^{99m}$)</td>
<td>1 ½ years</td>
</tr>
<tr>
<td>Abdominal CT</td>
<td>2 ½ years</td>
</tr>
<tr>
<td>High resolution Chest CT (e.g. pulmonary embolism, angiogram)</td>
<td>5 years</td>
</tr>
</tbody>
</table>

* Using an average background radiation level of 3 mSv/yr and Tables 8-11

Donald Peck, PhD and Ehsan Samei, PhD
Answer True or False:

People’s perceptions of risk are often inaccurate.
Expressions of Risk Information

- Lifetime risk of 0.001
- Lifetime risk of 0.1%
- Lifetime risk of 1/1000
- In community of 1000 people, 1 expected to die
Principles of Communicating Technical Information to Patients/Public

- Tell the whole truth
- Avoid technical jargon
- Avoid absolutes
- Say only what you know
- Translate technical terms into understandable language
- Write/say simple sentences
- Ask questions for understanding

© WRH (Jan., 2011)
Questions Patient Should Ask

- Is this exam necessary?
- What benefits will I receive?
- Can the information be obtained without radiation?
- How much radiation will I receive?
- Can this amount be lowered?
- What is the risk from the radiation?
- Is the imaging protocol optimized? (esp. important for children)
- What is the cost of the exam?
- May I have a record of the exam and dose for my file?