Development and Integration of New Analytical Technologies in Review of Biologics by FDA Center for Biologics Evaluation and Review

Fourth AIMBE/NIH Workshop on Validation and Qualification of New In Vitro Tools and Models for The Pre-clinical Drug Discovery Process
Bethesda, MD
March 6-7, 2014

Richard McFarland, PhD, MD
Associate Director for Policy
Office of Cellular, Tissue, and Gene Therapies
Center for Biologics Evaluation and Research
United States Food and Drug Administration
Outline

- CBER Organization
- CBER Regulated Products
- BLA Regulatory Environment
- OVRR product in cell substrate area
- OCTGT research in MSC area
- Concluding remarks
CBER Organization

• Three “Product” Offices
 – Office of Vaccines Research and Review
 – Office of Blood Research and Review
 – Office of Cellular, Tissue, and Gene Therapies

• Supporting Offices
CBER Activities

• Regulatory review
• Mission-relevant Research
• Regulatory policy and guidance development
• Outreach to Stakeholders
What OVRR Regulates

- Antitoxins, antivenoms, most enzymes, venoms
- Vaccines (bacterial, viral, parasitic - therapy and prophylaxis)
- Adjuvants
- Allergenics
What OBRR Regulates

• Blood (collection and processing)
• Blood components (whole and cellular)
• Blood fractionation products (Ig, albumin, HGB, clotting factors)
• Diagnostic kits (HIV, hepatitis)
What OCTGT Regulates

- Stem cell and stem cell-derived products
- Somatic cell therapies
- Gene therapies
- Therapeutic vaccines and other antigen-specific active immunotherapies
- Devices and combination products
Regulatory Framework
Governing Regulations

• Code of Federal Regulations, Section 21, subchapter F
 – part 600, Biological Products
• Defines a biological product as
 “...any virus, therapeutic serum, toxin, antitoxin, protein or analogous product applicable to the prevention, treatment or cure of diseases or injuries of man...”
Provides the legal basis for enforcement
Regulatory Considerations for All Biologics

- Safety, efficacy, purity, potency
- Oversight of both product and process
- Quality control of product and intermediates
- Reproducibility of lots
Regulatory Flexibility
21 CFR 610.9

• Provides for modification of any particular test method or manufacturing process or the condition under which it is conducted as required in Part 600 if:

• The applicant presents evidence demonstrating that the modification is at least equal to the methods (to measure safety, purity, potency, effectiveness) in the regulations
The IND Review Process

• Emphasis of review is on data to support:
 – Product safety and characterization
 – Manufacturing and quality control issues
 – Scientific rationale

• Sound scientific principles
 – Pre-clinical studies
 – Product development
 – Clinical protocol
Goals of Preclinical Safety Evaluation

- Discern mechanism of action
- Terminate potentially unsuccessful development programs early
- Provide data to support use in IND and BLA clinical studies
- Provide data to support labeling
Goals of Preclinical Safety Evaluation

- Recommend safe starting doses and escalation schemes for humans
- Identify potential target organ(s)
- Identify parameters for clinical monitoring
- Identify “at risk” patient populations (inclusion/exclusion criteria)
Selected Differences Between Drugs and Biologics

<table>
<thead>
<tr>
<th>Traditional Drugs</th>
<th>Biologic Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidelines</td>
<td>Guiding principles</td>
</tr>
<tr>
<td>Previous examples</td>
<td>Unique</td>
</tr>
<tr>
<td>Historical data base</td>
<td>Concurrent controls</td>
</tr>
<tr>
<td>Maximal tolerated dose</td>
<td>Optimal biologic dose</td>
</tr>
<tr>
<td>Species-independent</td>
<td>Species-specific</td>
</tr>
<tr>
<td>Metabolized</td>
<td>Degraded</td>
</tr>
<tr>
<td>Specific mechanisms</td>
<td>Pleiotropic mechanisms</td>
</tr>
</tbody>
</table>
CBER Approach to Preclinical Safety and Toxicity Testing

• Creative, problem-solving
• Data-driven
• Should be based on best available science, technology to date
• Careful design and judicious use of animals
 – should allow early initiation of clinical studies
 – should allow uninterrupted clinical development
Critical Issues for Optimizing Predictive Value of Testing

• Review of current technologies
 – Availability
 – Appropriateness
 – Usefulness

• Consideration of new technologies
 – Identification
 – Development
 – Application

• All technologies
 – Fit for purpose
CBER Research on Innovative Products and Product Testing
OVRR Challenge

Introduction of novel cell substrates for vaccine production poses new questions of safety assessment
Parallel Evolution of Cell Substrates and Regulatory Approach

- **Primary Tissues or Cell Cultures (1950’s)**
 - 21 CFR 600 series
 - Chicken embryonated eggs; embryo fibroblasts

- **Diploid Cell Strains (1970’s)**
 - *Guidelines: J. Biol. Stand., 1981*
 - Human MRC-5 and WI-38

- **Continuous Cell Lines (1980’s)**
 - *Points to Consider: 1984; 1987; 1993*
 - *Guidance for Industry, 2006*
 - *African green monkey VERO (non-tumorigenic)*
Currently Novel Cell Substrates

- Naturally-occurring
 - Mammalian: tumorigenic cell lines and tumor-derived cells
 - Avian cell lines: embryonic stem cells
 - Insect cells
 - Plants and plant cells
 - Bacteria

- Genetically-engineered
 - new, well-characterized cell line from primary or diploid cells
 - packaging cell lines
 - a specific cell line for complementation of vectored viruses
General Safety Issues Associated with Cell Substrates

- Intact cells
 - Tumorigenicity
- Residual cellular components
 - DNA (oncogenicity, infectivity)
 - Proteins (allergenic reactions)
- Adventitious Viruses
 - Exogenously-acquired (replicating viruses and latent viruses)
 - Genetically-inherited (endogenous retroviruses)
 - \textit{de novo}-generated (novel recombinant viruses)
 - VLPs containing co-packaged “unwanted” RNA or DNA
 - Reverse transcriptase (RT) activity produced from avian and insect cells (retroviral particles/retrotransposons?)
Strategies to Mitigate Risk of Adventitious Viruses

- Identify potential safety concerns to enable development of a comprehensive testing plan and risk mitigation strategy
- Cell banking and use of qualified raw materials
- Incorporation of steps during manufacture for viral clearance and purity
- Testing
 - Extensive testing for known and unknown agents in the starting materials
 - Adventitious agent testing at different stages in manufacturing
 - Using various sensitive and broad detection assays
New Technologies for Broad/Novel Virus Detection

- **Microarrays**
 - Array consists of virus-specific oligos based upon known and related virus sequences: use of long primers allows for some mismatch
 - Technology uses direct application of nucleic acid to arrays or a random PCR step prior to application

- **Broad-range PCR with mass spectrometry (PLEX-ID)**
 - Long PCR primers that are specific for virus families
 - Amplicons are detected and sized by mass spectrometry (MS)
 - Mass of amplicons are compared with a database to identify the organism

- **Massively parallel (deep) sequencing (MPS)**
 - Sequencing without prior knowledge of sequences for known and novel viruses
 - Several high-throughput sequencing platforms are currently available and some are emerging
OCTGT Research
OCTGT Challenge

Characterization of novel cellular therapeutic “product class” with inherent and manufacturing-induced variability
Challenges for MSC Clinical Translation

• MSCs are diverse
 – Source
 – Characterization
 – Manufacturing

• Need to better understand how these factors influence product characteristics and performance in clinical trials

• FDA reviews each regulatory submission based on its own merits, no FDA requirement for consistent nomenclature, manufacturing method, characterization method
Identification and correlation of MSC attributes with \textit{in vivo} and \textit{in vitro} assays of safety and efficacy: CBER/FDA MSC consortium

Multipotent Stromal Cell Characterization

Moos Lab: gene expression, qRT-PCR, single cell PCR

Puri Lab: genomics

Correlate candidate attributes with assay outcomes

Alterman Lab: proteomics

Cytoplasm 33%

Unknown 25%

Membrane 13%

Nucleus 24%

McCright Lab: \textit{in vivo} model of critical hind limb ischemia

Bauer Lab: \textit{in vitro} quantitative proliferation and differentiation

Wei Lab: \textit{in vitro}, \textit{in vivo} immunosuppression

hMSC

mT-cell

Hursh lab: epigenetics, karyotypes
ISCT proposed an industry standard to help harmonize MSC product characterization

POSITION PAPER
Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement

Table 1. Summary of criteria to identify MSC

<table>
<thead>
<tr>
<th>1</th>
<th>Adherence to plastic in standard culture conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>In vitro differentiation: osteoblasts, adipocytes, chondroblasts (demonstrated by staining of in vitro cell culture)</td>
</tr>
</tbody>
</table>
CFU-F Activity Decreases with Tissue Culture Passage: Donor Differences
Cell Size Increases with Tissue Culture Passage: Donor Differences

- **Passage 3**
- **Passage 5**
- **Passage 7**

![Bar chart showing average cell diameter increases with tissue culture passage for different donor types.](chart.png)
Adipogenic Activity Decreases with Tissue Culture Passage: Donor Differences
Consensus MSC Markers do not Correlate with Functional Heterogeneity, Donor or Tissue Culture Age Differences

International Society for Cell Therapy: Cytotherapy (2006) Vol. 8, No. 4, 315-317. MSCs are characterized as being adherent to plastic, capable of tri-lineage differentiation, ≥95% of the MSC population must express CD105, CD73 and CD90, as measured by flow cytometry. Additionally, these cells must lack expression (≤2% positive) of CD45, CD34, CD14 or CD11b, CD79a or CD19 and HLA class II.
Conclusion

- CBER regulates an heterogeneous group of biologic products
- The IND and BLA regulations provide flexibility to allow use of innovative in vitro testing to support investigational and marketing of these biologics when these technologies are shown to be fit for purpose
- Research into manufacturing and safety issues of some CBER products may be informative for development of cell-based in vitro assay
Public Access to CBER

CBER website:
http://www.fda.gov/BiologicsBloodVaccines/default.htm

Phone: 1-800-835-4709 or 301-827-1800

Consumer Affairs Branch (CAB)
Email: ocod@fda.hhs.gov
Phone: 301-827-3821

Manufacturers Assistance and Technical Training Branch (MATTB)
Email: industry.biologics@fda.gov
Phone: 301-827-4081

Follow us on Twitter
https://www.twitter.com/fdacber
Contact Information

Richard McFarland, Ph.D., M.D.
Assoc. Dir for Policy, OCTGT
CBER/FDA
1401 Rockville Pike (HFM-700)
Rockville, MD 20852-1448
301-827-4163
richard.mcfarland@fda.hhs.gov