Validation/Qualification Issues for Enabling Technologies for Drug Discovery

David M. Stresser, Ph.D. BD Biosciences

Who is BD?

- FORTUNE 500 company (#316)
- Locations in more than 50 countries
- Approximately **29,000 associates** worldwide
- Serves healthcare institutions, life science researchers, clinical laboratories and the general public
- Sells a broad range of medical supplies and services, devices, laboratory equipment and diagnostic products
- BD GentestSM Contract Research Services provides in vitro drug metabolism services

My goals today

- Bring a CRO industry perspective on assay validation
- Offer a view on challenges to successful validation
- Review a case study from our laboratory
- Recommendations and closing thoughts

What is Validation?

- Validation is demonstrating you can repeatedly do what you want to do.
 - That means knowing how your inputs relate to your outputs
 - It starts early in the process/product development and continues throughout commercial life of the product.
- Must be fit for purpose
 - Simple QC assays for a research use only product
 - Safety study assay that is correlated (or predictive) of a clinical outcome.

CRO Perspective

- Not significantly different than any other life science business
- We must meet expectations of:
 - Regulatory agencies
 - Customers (funding)
 - Auditors (agencies, customers, consultants)
- Our customer base
 - Mostly large and small pharma
 - They require "research grade" to GLP standard assays
 - Customer philosophies vary as a service provider we need to achieve a validation standard representative of the highest standard among our target customer base

Challenges to Assay Validation

- It is resource intensive
- Requires multi-disciplinary expertise
 - Scientists
 - Statisticians
 - Quality Assurance
 - Project managers
- Relative to the science and other end goals, the process can be dull and tedious
- Communication keeping all project team members aligned and stakeholders informed

General Strategy for Assay Validation

• Prework

Qualitative requirements

- Lock in on project goals
 - Input from various sources [Regulatory guidelines, "Voice of customer", Direct study of customer environment (e.g. scientific literature, etc)]
- Verification

Quantitative requirements

- Conduct the needed experiments to become adequately familiar with the assay conduct, QCs, reproducibility and robustness
- Adequate verification data sets make the validation exercise much easier from a quantitative and statistical perspective.
- With robust data going in, validation should be a coronation.
- Validation
 - Demonstration and documentation that acceptance criteria can be met
 - Make recommendations for standard assay conditions

- Intra-assay precision (i.e. multiple replicates of the same conditions are tested in one assay)
- Inter-assay precision (i.e. repeat assays conducted by the same operator). If the repeat assays are conducted on separate days, this test may also be referred to as inter-day precision.
- Inter-operator precision (i.e. identical assays conducted by different operators either side by side or sequentially as applicable)

- Acceptance criteria
 - The validation protocol must specify acceptance criteria for all parameters to be validated.
 - Acceptance criteria are determined by the Study Director (with input from stake holders if applicable).
 - Acceptance criteria may be based on a number of considerations, including, but not limited to
 - Historical in-house data
 - Results of verification experiments
 - Voice of customer
 - Industry standards
 - Competitive environment
 - Regulatory guidelines
 - Scientific literature

- The number of QC parameters and statistical precision will dictate failure rate. For example, 4 QC values at 95% equals a 20% failure rate
- Focus on the right number of QCs and the right level of statistical failures.
- The "flip side" of broad statistical criteria is the acceptable range may be excessively large

- The limits may evolve over time as more data accumulates
- Other driving factors for modifying limits includes changes in customer expectations, waste elimination targets, etc

 Is an upward/downward trend observed? Examine reasons and take corrective action if possible

Assay "Qualification", not validation

- Demonstrate reproducibility only
 - Typically interday
- Establish a positive and negative control
- "Research grade"
 - No formal protocols, reports
 - No formal involvement of QA
- For many customers, this meets their expectations

Structured process to validation

- Establish a process with check points to promote care and proper planning (e.g. peer review, QA review)
- Check points represent "control" points in the process

Case Study - Validation

- <u>Project Objective Statement:</u> Adapt cytochrome P450 inhibition assays to mass spectrometry analytical methodology and introduce preincubation to standard protocol.
- Cytochrome P450 inhibition is a required drug-drug interaction test for small molecule drug candidates
- Analytical method validation
 - 8 metabolites; 8 validation protocols
- Assay method validation
 - 8 assays; 16 Validation protocols for IC₅₀, K_i, time-dependent inhibition analysis
- 48 Validation protocols and Reports

Acceptance Criteria

- <u>Analytical</u>
- FDA guidance document for analytical method validation (2001)
 - Selectivity
 - Standard Curve
 - Stability
 - Autosampler
 - Freeze/thaw
 - 4 weeks @ 20 °C
 - Accuracy and Precision

<u>Assays</u>

- Incubation time(s) selected must fall within linear portion of the response
- Protein concentration(s) selected must fall within linear portion of the response
- Total metabolism must be less than 15%.
- K_M value must be within 5-fold of literature values reported by Obach and Walsky, Drug Metab. Dispos. 32: 647, 2004.
- IC₅₀ values must be < X μM and duplicate determinations within 5-fold
- K_i values must be within 5-fold of the IC₅₀ value and less than twice the IC₅₀ value. Duplicate determinations within 5-fold

Example Assay Development and reproducibility: CYP2C9/Diclofenac 4'-hydroxylase

- Resulting Data Set
 - Linearity of metabolite formation with incubation time and HLM protein concentration
 - K_M determination
 - 3.5 µM, 3.9 µM
 - IC₅₀ and K_i determination with sulfaphenazole
 - IC50: 0.41 μM, 0.63 μM
 - K_i: 0.20 µM, 0.19 µM

Dixon

Assay Validation Results

Parameter	Criteria	Results
Time dependence	Incubation time(s) selected fall within the linear portion of the assay	Pass (5 min)
Protein Dependence	Protein concentration(s) selected fall within the linear portion of the assay	Pass (0.02 mg/mL)
Total metabolism	Less than 15%. If assay sensitivity is a problem the study director will determine if up to 30% total metabolism is acceptable.	Pass (7% at 0.25 μM midazolam, 0.04 mg/mL protein, 5 min)
К _М	Within 5-fold of literature values reported by Stresser et al; Drug Metab. Dispos. 32: 105-112, 2004 (3.0 μ M) or as determined by Obach and Walsky, Drug Metab. Dispos. 32: 647-660, 2004 (2.3 μ M).	Pass (2.0 μΜ, 2.3 μΜ)
IC 50	Ketoconazole: < 1 μM; Duplicate determinations within 5-fold	Pass (0.013 μΜ, 0.019 μΜ)
K _i	Within 10-fold of the IC_{50} value and less than twice the IC_{50} value; Duplicate determinations within 5-fold	Pass (0.0086 μΜ, 0.0092 μΜ)

Assay Validation Results (cont)

Parameter	Criteria	Results
IC ₅₀ shift	The shift in IC_{50} for azamulin, verapamil, and diltiazem should be > 2-fold at the 30 min preincubation time point; the shift in IC50 for ketoconazole should be < 2-fold	Pass Ketoconazole (0.9, 1.0) Azamulin (76, 44) Verapamil (62, 97) Diltiazem (>33, >26)
Kı	Within 5-fold of the literature value reported in Obach et al (2006) for verapamil (1.8 μ M) and diltiazem (4.5 μ M). Within 10-fold of the mean value obtained during feasibility experiments for azamulin (0.17 μ M). Duplicate determinations within 5-fold of each other.	Pass Azamulin (0.10 μΜ, 0.23 μΜ) Verapamil (1.6 μΜ, 2.4 μΜ) Diltiazem (13 μΜ, 4.4 μΜ)
k _{inact}	Within 5-fold of the literature value reported in Obach et al (2006) for verapamil (0.043 min ⁻¹) and diltiazem (0.012 min ⁻¹). Within 10-fold of the mean value obtained during feasibility experiments for azamulin (0.50 min ⁻¹). Duplicate determinations within 5-fold of each other.	Pass Azamulin (0.54 min ⁻¹ , 0.82 min ⁻¹) Verapamil (0.023 min ⁻¹ , 0.022 min ⁻¹) Diltiazem (0.0024 min ⁻¹ , 0.0076 min ⁻¹)

Outcome and observations

- All validations met their acceptance criteria
- Not always "smooth sailing"
- Amended protocols or protocol deviations
- Amendments and deviations should be avoided
 - Unexpected time and effort to discuss, resolve & document
 - Frustration to project teams
 - Represent obstacles to successful validation

Example deviations

- 1. Organic solvent used by analytical chemist was slightly different than that used by the assay biochemist (2.5% vs 0.3%). Eventually required amended protocol to demonstrate lack of an effect.
- 2. Protocol created unattainable mandate
 - "IC₅₀ value will be reported" (was greater than highest concentration tested no effect on conclusion)
- 3. Unanticipated results during validation experiment caused a change in substrate concentration
- 4. Analyst forgot a (non-critical) step
- 5. Instrument malfunction meant exceeding the stability time point specified in the protocol.

Tips to avoid deviations

- Ensure analysts understand the task and are aware of what could go wrong. Don't assume.
- Incorporate specificity into the protocol to provide guidance, but adequate flexibility to avoid painting yourself into a corner
- Don't skimp on time needed for verification

- It is unlikely you will have all the information and forethought needed to avoid deviations, amendments and other "issues"
 - Resolution can range from simple to down right "painful". Input from key stakeholders, "voices of reason" and experienced individuals result in best outcomes.
- With cell-based assays, variability is larger than for biochemical endpoints described here. Long term drift is more of a concern.
- An ounce of planning is worth a pound of reactive effort

Thank you for your attention

- Acknowledgments:
 - Bill Doherty
 - Elke Perloff
 - Charles Crespi
 - Shangara Dehal

