Issues in validating cell-imaging based assays

J. Elliott, A. Plant, M. Halter, G. Cooksey, K. Bhadriraju, A. Tona Cell System Sciences Group NIST Gaithersburg AIMBE/NIH Summit, March 19, 2012

National Institute of Standards and Technology

What is NIST....

-Department of Commerce

-Mission to improve American life via good measurements

-Standards, new instrumentation and new measurement strategies

Optical standards: ND Filter, fluorescence, spectral

Chemical standards: Vitamin D, hormone in serum, albumin

Validation of a measurement

Is the measurement right? What's the evidence?

- Measurement characteristics
 - Accuracy- How close to the real value?
 - **Precision** how much random error?
 - **Response function-** linearity/calibration
 - **Reproducibility**-do you get the same measurement next week?
 - **Robustness**-sensitivity to variations in assay parameters
- Instrument performance characteristics
 - **Dynamic range-** lowest limit of detection, highest limit of detection
 - Contrast transfer function- signal to noise, resolution
- Standards, reference materials and protocols
 - Reference materials- flatfield standard, fluorescence standard
 - Quantitative imaging protocol (i.e. flatfield, dark counts, etc)
 - Positive and negative controls, calibration curve

Example: Bioanalytical Validation flowchart (analyte concentration)

C. Hartmann et al. J. Pharmaceut, Biomed, Anal. 1998, 193-218

Validation of biological function

- Is the biological mechanism of action true?
 - Control compounds with known effects (inhibitors, activators)
 - Additional high quality assays and experiments likely required (live cell imaging, knockouts)
 - The aggregate of data validates a biological function.

Microfluidic cellular assays

- Advantage: Complex plumbing possible, highly parallel, less reagent
- Disadvantage: not the same as "bulk" TCPS dish gold standard- high surface to volume ratio (leaching), gas permeability, cell seeding

128 chamber device w/ gradient mixer (G. Cooksey)

Ribosome Inhibitor Assay

CMV-dsEGFP-Vero cells $t_{1/2}$ ~2h

Validation Issues

Results comparable to TCPS?

Cell density effects?

Paracrine signaling effects?

Flow rate, tubing fabrication, imaging platform effects?

Halter et al. Assay Drug Dev Technol. 2009 Aug;7(4):356-65.

Experimental Design for Device Performance Evaluation

dsEGFP-Vero cells and cycloheximide- originally developed for ricin potency

GFP Decay Assay Performance Summary

Substrate	Tubing	Lamp	Flow (µl/min)	Mean T± stdev (min)	<i>n</i> (# regions)	Signal-to- Noise Ratio
Microfluidic Experiment A	Teflon	LED	0.1-1.5	236 ± 27	54	64 ± 2
Microfluidic Experiment B	Teflon	Hg arc	0.5-3.5	224 ± 31	64	47 ± 3
Microfluidic Experiment C	Tygon [®]	Hg arc	0.5-2	236 ± 15	61	48 ± 3
Microfluidic* Experiment D	Tygon®	Hg arc	0.5-2	254 ± 19	61	138 ± 50
TCPS dish A B C D	N/A	LED Hg arc Hg arc Hg arc	Bulk	244 ± 66 239 ± 48 215 ± 27 250 ± 13	8 9 9 9	14 ± 3 7 ± 1 9 ± 1 9 ± 2
PDMS-coated dish A B	N/A	LED Hg arc	Bulk	$\begin{array}{c} 254\pm41\\ 246\pm13 \end{array}$	9 9	11 ± 1 11 ± 2

N/A = not applicableBulk = 3ml stagnant media *mean ± std (5 to 15h)

Questions:	Evidence
Comparable to TCPS?	Yes. No statistical difference.
Cell density effects?	No after 50 cells/well
Well position effects?	No. No statistical difference.
Robust?	Robust to fabrication, tubing, lamp, flow rate, replication
Other information:	5-fold higher signal to noise

Evaluating the Accuracy of Image Analysis Tools

Tonsil tissue w/DAPI and Ki-67 antibody (Biocare Medical)

Hill et al BioMed Central Bioinformatics 2007

- What do you want to quantify (metric)?
- How many images are required?
- What image analysis do you use?
- What validation evidence do you have?

 Inaccurate image analysis can lead to erroneous conclusion!!

Evaluation the Accuracy of Cell Segmentation

- Requires manual (expert-trained) segmentation data to serve as reference data
- Image series, benchmarks, manual segmentation databased at www.sbd.gov

Non-destructive Phase Imaging

Phase imaging, NIH 3T3

- Phase can be used for live cell imaging.
- Segmentation algorithm custom
- Need to determine acceptance criteria

Differentiation in stem cells

Quantifying GFP reporter activity in live cells

CTRL: Flatfield corrected with 50% fluorescein solution
CTRL: <3% photobleaching of GFP over imaging time
CTRL: Stable lamp intensity (LED)
97% complete-cell-cycle accuracy (193 tracked cells out of 199)
99.92% frame-to-frame accuracy (6 missed tracks out of 7957)

Validation of automated algorithms

Validating Cell Imaging Protocols

Effects of Fixation

Cytoplasmic GFP

In situ cell-by-cell analysis

Phospho-myosin

Bhadriraju et al BMC-Cell Biology 2007

Langenbach et al Biointerphases 2006

Redesigning Cell-based Assays with Validation Criteria:

International Alliance for NanoEHS Harmonization

•Stage 3.1 (2010)- Lack of agreement in interlaboratory testing (9 expert academic labs) •Why??

•Several control experiments added: Chemical ctrl

-within pipette variability
-between pipette step variability
-collection of raw absorption data
-no cell NP test

•Protocol modified:

-directed pipette procedure -directed dilution procedure -directed NP dispersion procedure

Validation criteria:

- -within pipette variability <6%
- -between pipette step variability <10%
- -OD <1.2 in no treatment wells
- -reagent only well variability <3%
- -EC50 CdCl2 ctrl ~30 uM
- -no absorption in NP only wells

Instrumentation Benchmarking Tools

Fluorescence Imaging System

Prototype fluorescent microscope benchmarking tool- Halter 2012

- Photostable fluorescent glass
- Dynamic range
- Signal to noise
- Lower limit of detection
- Upper limit of detection (saturation)

Phase Microscopy

Correct alignment

PDMS stamp on glass

Incorrect alignment

Halter et al 2011

Distance (nixels)

698

 Need for benchmarking tools and protocols to specify the quality of an imaging system

Summary

- Need quantitative measurements to assess the quality of an assay method
 - Accuracy, precision, robustness, reproducibility
- Requires reference data, reference materials (standards), benchmarks, controls, statistics
- Experimental design can be used to establish robustness to factors
 - Fabrication, culture conditions, imaging system, etc.
- Cell imaging requires validation of image analysis, cell preparation protocols and benchmarking of imaging conditions
- Specifications that must be met before an assay is deemed valid can be identified with experimental design and quantitative measurements.