

A 3D model of human brain development for studying gene/environment interactions

Thomas Hartung

Doerenkamp-Zbinden Professor and Chair for Evidence-based Toxicology, EHS Director, Center for Alternatives to Animal Testing (CAAT) Joint appointment: Molecular Microbiology and Immunology Bloomberg School of Public Health, Johns Hopkins University, Baltimore, US

Professor of Pharmacology and Toxicology, University of Konstanz, Germany

Chemicals

Pathogens

Drugs & Countermeasures

... but no patients to test on.

NAS committee

Food for Thought ... Alternative Approaches for Medical Countermeasures to Biological and Chemical Terrorism and Warfare

Thomas Hartung^{1,2} and Joanne Zurlo¹

¹Johns Hopkins University, Bloomberg School of Public Health, CAAT, Baltimore, USA; ²University of Konstanz, CAAT-Europe, Germany ALTEX. 2012;29(3):251-60.

warranted at this time ... utilizing alternative methods to animal models"

Average cost \$1,4 billion

92% fail:

- 20% tox not predicted
- 40% no efficacy -

Drug development

Research

Clinical trials

1 in 100 patients in hospitals dies from adverse drug reactions

Limitations of (animal-based) drug development

- Humans are not 70 kg-rats...
- Young animals, artificial diseases, unrealistic treatments, lack of covariables (comorbidity, other treatments)
- Few evaluations, e.g. stroke, sepsis, multiple sclerosis, show disappointing results
- Lack of reproducibility by industry of academic preclinical studies (11-25%)

Human on Chip Approach

Could overcome many of these shortcomings, especially using stem cells

C. Zhang et al. (2009), "Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments"

6

http://en.wikipedia.org/wiki/Organ-on-a-chip

The Johns Hopkins Center for Alternatives to Animal Testing

CAAT Information Day

Tuesday, May 22, 2012 10:00 am – 4:30 pm Sheldon Hall (W1214) Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street Baltimore, MD

New Approaches to Assessing Countermeasures to Bioterrorism Agents

Speakers include:

George Korch (JHBSPH and US DHHS) William C. (Clint) Florence (DTRA) Donald Drake (Sanofi-Pasteur) Marti Jett (US Army) Anthony Bahinski (Wyss Institute, Harvard) Sonia Grego (RTI International) Lisa Hensley (US FDA) Thomas Hartung (CAAT)

Registration fee (including lunch): \$100 (free for the JHU community) For registration and information, contact Marilyn Principe at <u>mprincip@jhsph.edu</u>

Opportunities from countermeasures to bioterrorism

 Funding program (\$200 million) from NIH/FDA/ DARPA/DTRA

 Need for predictivity, QA, validation

 Joint workshop 10 May 2013 FDA / NIH / DARPA / CAAT

InfoDay 22 May

Preparation of 3D aggregating brain cell cultures from human iPSCs

School of Public Health

Multi-electrode array (MEA) recordings in aggregates

Aggregate on MEA

Spontaneous bursting activity

Prediction of neurotoxicity by MEA recordings

Preparation of 3D aggregating brain cell cultures from human iPSCs

Characterization of human iPSCs

KARYOTYPING

alle Hg	(Joseph)	1000	1220	30220	Dettel	1000 5995	
33512 3362	00000 00000	dianc.	22	1940 - 0196	(24) 360	and And	
<u>8</u> .8	ខ្មុំទំ	66	1	ä,ä	2 2	1 550 550	
a's	ж Ж	**		ь <u>"</u> х	2000 2000 2000	v	

School of Medicine

PLURIPOTENT MARKERS

Neuronal Differentiation

3D aggregating brain cell cultures from human iPSCs

4 DIV

7 DIV

3D aggregating brain cell cultures from human iPSCs at 7 DIV

mRNA expression in 2D and 3D neuronal cultures

How can the cell system fit onto a platform, and what platform schematic would work best?

- After aggregation the 3D culture can be transferred to most platforms
- Without rotation stable for at least 72 hours (LUHMES and rat model)
- MEA platforms neuronal functionality (electrical activity recording)
- Larger samples size for e.g. intracellular metabolomics and transcriptomics analysis

Organotypic behavior of 3D-cell culturing models to maintain functional capacity: moving from phenotyping to mechanisms A workshop of the Center for Alternatives to Animal Testing - Europe (CAAT-Europe), the ALEXANDRA project, BASF SE, Beiersdorf AG, ecopa, L'Oreal and the Transatlantic Think Tank for Toxicology (t⁴)

Joint Information Day on Organotypic 3D Cell Culture Models and Engineered Tissues

> October 25th 2012 09:00 - 16:30

3D vs. 2D cultures

- Increased cell survival
- Increased differentiation
- Increased cell cell interaction
- Reproducing better the complexity of the organ
- Endpoints need optimization
- More complex lower reproducibility

Toxicology - \$3 billion of testing to regulate \$10 trillion of trade Human-on-chip

Problems

- Throughput
- Costs
- Predictivity
- Too precautionary
- Animal use
- New products
- New hazards
- Mixtures
- Individuals

© 2009, Johns Hopkins University. All Rights Reserved.

Scientific roadmap for the future of animal-free systemic toxicity testing

US Stakeholder Forum 30-31 May 2013 in preparation (M. Stephens) Looking for further interested partners!!!

Integrated Testing Strategies

Key contribution to REACH implementation process

> Use of different informations, not stand-alone replacement

Just became available (AltWeb or ALTEX website)

Food for Thought ... Integrated Testing Strategies for Safety Assessments

Thomas Hartung^{1,2}, Tom Luechtefeld¹, Alexandra Maertens¹, and Andre Kleensang¹ ¹Johns Hopkins University, Bloomberg School of Public Health, CAAT, Baltimore, USA; ²University of Konstanz, CAAT-Europe, Germany

WoE, EBT, ITS.... Similar problems, but not the same all: quality and data integration problem EBT/WoE retrospective -- ITS prospective WoE pragmatic -- EBT / ITS formalized

NAS vision report Tox-21c

United States Environmental Protection Agency EPA/100/K-09/001 | March 2009 www.epa.gov/osa

"With an advanced field of regulatory science, new tools, including functional genomics, proteomics, metabolomics, highthroughput screening, and systems biology, we can

replace current toxicology assays with tests that incorporate the mechanistic underpinnings of disease and of underlying toxic side effects." M.A. Hamburg, FDA 2011

"We propose a shift from primarily in vivo animal studies to in vitro assays, in vivo assays with lower organisms, and computational modeling for toxicity assessments" F. Collins, NIH, 2008

The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the Toxicity of Chemicals

Initiatives implementing Tox-21c

Organization	Approach	Purpose	Outcome
US EPA & Tox21 (ToxCast Program)	High-throughput testing	Chemical prioritization (initially)	"Biological signatures"
Hamner Institute	Case studies	"Just do it"	Proof-of-principle
NIH project (CAAT-US)	Pathway mapping	Pathway ID & annotation	Human Toxome

The concept of (finite number of) pathways of toxicity

CELL TYPE 1

PROPOSAL FOR A TEMPLATE, AND GUIDANCE ON DEVELOPING AND ASSESSING THE COMPLETENESS OF ADVERSE OUTCOME PATHWAYS

Figure1. A schematic representation of the Adverse Outcome Pathway (AOP) illustrated with reference to a number of pathways.

Workshop on the Concept and Tools for Pathways of Toxicity October 10 -12, 2012, Baltimore, MD

Human Toxome database

- Tox Mechan.

User side:

- Regulation
 Probabilistic
 RA
- Systems Toxicology
 - Virtual patient

PoToMaC -The Pathways of Toxicty Mapping Center Europe

Transformative Research Grant:

Mapping the Human Toxome by Systems Toxicology

HUMAN TOXICOLOGY PROJECT CONSORTIUM

7 companies, 3 stakeholders

European branch?

2 Mar 2012

"Driven both by legislative mandate and scientific need, a new suite of in vitro and cell culture-based animal-free methods are gaining a foothold in toxicology labs."

LIFE SCIENCE TECHNOLOGIES

Produced by the Science/AAAS Custom Publishing Office

Toxicology

Animal-Free Toxicology Sometimes, in Vitro is Better

The next time you use sharnpoo, air freshener, or moisturizing cream, consider this: How do you know it's safe? In all likelihood, whatever toxicologic screening its component ingredients were subjected to involved laboratory animals, the method of choice for decades and the industry's reigning "gold standard." Yet as Bob Dylan once put it, the times, they are a-changing. Animal-based testing is expensive and time-consuming, morally and ethically troubling, and most significantly, often a poor predictor of human toxicity. Animals aren't going anywhere just yet. But their numbers are dropping. Driven both by legislative mandate and scientific need, a new suite of in vitro and cell culture-based animal-free methods are gaining a foothold in toxicology labs. By Jeffrey M. Perkel

One key player in the modernization of toxicology screening is automation.

ALTEX 24 (2007) 67-73

Thomas Hartung, ECVAM Food for Thought ... on Validation

Toxicology Research

Cite this: DOI: 10.1039/c2tx20011b

www.rsc.org/tx

View Online / Journal Homepage Dynamic Article Links

Validation and quality control of replacement alternatives – current status and future challenges

Marcel Leist, Nina Hasiwa, Mardas Daneshian and Thomas Hartung

Received 5th February 2012, Accepted 9th May 2012 DOI: 10.1039/c2tx20011b

Definition of Validation

ALTEX 27 (2010) 253-263

Evidence-Based Toxicology – the Toolbox of Validation for the 21st Century?

Thomas Hartung

Johns Hopkins University, Bloomberg School of Public Health, Dept. Environmental Health Sciences, Center for Alternatives to Animal Testing (CAAT), Doerenkamp-Zbinden Chair for Evidence-based Toxicology, Baltimore, MD, USA, and Professor of Pharmacology and Toxicology, University of Konstanz, Germany

Knowledge: - PoT - MoA

Mechanistic instead of correlative validation

- 1. Identify PoT (AOP, MoA...)
- 2. Include in Human Toxome knowledge base Governance? EBT?
- 3. Design PoT-based reproducible assays
- 4. Show PoT coverage with well established reference chemicals
 5. Include in ITS
- 5. Include in ITS

6. Food for Thought article in ALTEX in press

Evidence-based Toxicology "Evidence-based medicine goes toxicology!"

Hoffmann and Hartung "Toward an evidence-based toxicology", Human Exp. Tox., 2006

Mar 2011: US EBTC Oct 2011: Secretariat at CAAT Jan 2012: First conference hosted by EPA

Kick-off meeting of the Evidence-Based Toxicology Collaboration (EBTC) Europe

Evidence-based Toxicology Collaboration

In conjunction with Eurotox Congress 2012 (Stockholm, Sweden)

June 17, 2012 15:30h - 17:30h

Radisson Blu Royal Viking Hotel • Vasagatan 1, Stockholm, Sweden Complimentary Registration: http://www.ebtox.com

Just became available (AltWeb or ALTEX website)

Workshop Report

Evidence-based Toxicology for the 21st Century: Opportunities and Challenges*

Martin L. Stephens¹, Melvin Andersen², Richard A. Becker³, Kellyn Betts⁴, Kim Boekelheide⁵, Ed Carney⁶, Robert Chapin⁷, Dennis Devlin⁸, Suzanne Fitzpatrick⁹, John R. Fowle III¹⁰, Patricia Harlow¹¹, Thomas Hartung¹, Sebastian Hoffmann¹², Michael Holsapple¹³, Abigail Jacobs¹¹, Richard Judson¹⁴, Olga Naidenko¹⁵, Tim Pastoor¹⁶, Grace Patlewicz¹⁷, Andrew Rowan¹⁸, Roberta Scherer¹, Rashid Shaikh¹⁹, Ted Simon²⁰, Douglas Wolf¹⁴, and Joanne Zurlo¹

Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing

Richard Judson¹, Robert Kavlock¹, Matthew Martin¹, David Reif¹, Keith Houck¹, Thomas Knudsen¹, Ann Richard¹, Raymond R. Tice², Maurice Whelan³, Menghang Xia⁴, Ruili Huang⁴, Christopher Austin⁴, George Daston⁵, Thomas Hartung⁶, John R. Fowle III⁷, William Wooge⁸, Weida Tong⁹, and David Dix¹

EBT Collaboration Steering Committees

ebt C	H ₆₄				
Image: A state of the state	C Reader				
🔂 🋄 Wiktionary LEO Pubget Google Scholar Welch Welch Library K-finder Slideshare Prezi Google Maps News 🔻 Wikipedia Wiktionary KODAK PULSE Thomas 🔻 Evernote tom 🔻 Popular 🔻 Popular					
Detection and sequencing of microRNA using MALDI time-of-flight mass spectr libres.uncg.edu/ir/uncg/f/Yang_uncg_0154M_10557,pdf EBTC					
ि RSS 는 Twitter 📑 Facebook					
1					

Contact Us

About Us

Meetings & Symposia

Steering Committee

What is Evidence-based Toxicology?

The Evidence-Based Toxicology (EBT) Collaboration has recently taken up the challenge of translating evidence-based approaches from medicine to toxicology. The Collaboration has closely coordinated steering committees in the US and Europe with members drawn from government agencies, academia, and industry. More...

0 0

LATEST NEWS

- US EBTC Receives Informal Tutorial on Systematic Reviews The US EBTC Steering Committee held an informal tutorial on systematic reviews (SRs) on July 23, 2012 at Johns Hopkins S...
- Kick-off meeting of the Evidence-Based Toxicology Collaboration (EBTC) Europe In conjunction with Eurotox Congress 2012 (Stockholm, Sweden) June 17, 2012 | 15:30h - 17:30h Radisson Blu Royal Vi...

The difficulty lies, not in the new ideas, but in escaping from the old ones.

John Maynard Keynes

(1883 - 1946)

© 2009, Johns Hopkins Uni