Microfabrication and Microfluidics

The Microfabrication and Microfluidics Unit of the BEPS Shared Resource specializes in the following:

  • Design, fabrication and implementation of microfluidic devices
  • Rapid turnaround of single or multi-layer templates down to ~1.5 µm lateral dimensions
  • Microfabricated devices made from silicon/glass, PDMS, thermoplastics, and agarose.
  • Structured surface modification, including microcontact printing
  • Developing in vitro platforms that model tissue environments for realistic studies of cellular interactions.  Methods include microfabrication, electrospinning, hydrogel fabrication and characterization, and finite element analysis 

Our goal is close collaboration and rapid, iterative design. Although our preferred mode of operation is to disseminate microfabrication technology by having researchers from other laboratories participate actively in device fabrication, we can make templates and devices if desired.

We are located in Building 13 on the NIH campus.

This is an illustration of a template for SU dash 8 on silicon

This is an illustration of a hydrogel with single wells

This is an illustration of a template for chemotaxis studies

The Microfabrication and Microfluidics Unit has the following capabilities on-campus

  • Contact aligner for wafers up to 4” diameter, lateral resolution down to 1.5 µm.
  • Software for photomask design.
  • Spin-coater for rigid and flexible substrates
  • Protocols for fabrication of
    • SU-8 templates with heights from 1µm to 250µm
    • Dry-film resist templates on flexible substrates
    • PDMS and agarose devices
    • Paper microfluidic devices
  • Plasma cleaner (air or oxygen) for activating polymer surfaces
  • Contact angle measurement
  • Capability for hot embossing thermoplastics
  • Thermal evaporator for metal (Cr/Au, Al) deposition
  • Expertise in implementing flow control (displacement, electokinetic, and pressure) for microfluidic devices

For silicon/glass devices, tight-tolerance features, or high-yield requirements we can use facilities at NIST.

Ravin RMorgan NYBlank PSRavin NGuerrero-Cazares HQuinones-Hinojosa AZimmerberg J
Biophys. J.
2019 Oct 01

Paul CDBishop KDevine APaine ELStaunton JRThomas SMThomas JRDoyle ADMiller Jenkins LMMorgan NYSood RTanner K
Cell Syst
2019 Aug 28

Wulftange WJRose MAGarmendia-Cedillos Mda Silva DPoprawski JESrinivasachar DSullivan TLim LBliskovsky VVHall MDPohida TJRobey RWMorgan NYGottesman MM
J. Cell. Physiol.
2019 Nov

LeBrun TSchuck PWei RYoon JSDong XMorgan NYFagan JZhao H
PLoS ONE
2018

DiStefano TChen HYPanebianco CKaya KDBrooks MJGieser LMorgan NYPohida TSwaroop A
Stem Cell Reports
2018 Jan 09

Petrie Aronin CEZhao YMYoon JSMorgan NYPrüstel TGermain RNMeier-Schellersheim M
Immunity
2017 Nov 21

Clatworthy MRAronin CEMathews RJMorgan NYSmith KGGermain RN
Nat. Med.
2014 Dec

Miao HChen LBennett EEAdamo NMGomella AADeLuca AMPatel AMorgan NYWen H
Proc. Natl. Acad. Sci. U.S.A.
2013 Nov 26

Wen HGomella AAPatel ALynch SKMorgan NYAnderson SABennett EEXiao XLiu CWolfe DE
Nat Commun
2013

Jaeger AADas CKMorgan NYPursley RHMcQueen PGHall MDPohida TJGottesman MM
Biomaterials
2013 Nov


Chikkaveeraiah BVBhirde AAMorgan NYEden HSChen X
ACS Nano
2012 Aug 28

Lynch SKPai VAuxier JStein AFBennett EEKemble CKXiao XLee WKMorgan NYWen HH
Appl Opt
2011 Aug 01

Zubair ABurbelo PDVincent LGIadarola MJSmith PDMorgan NY
Biomed Microdevices
2011 Dec


Kakareka JWMcCann TEKosaka NMitsunaga MMorgan NYPohida TJChoyke PLKobayashi H
Mol Imaging Biol
2011 Oct



Morgan NYEnglish SChen WChernomordik VRusso ASmith PDGandjbakhche A
Acad Radiol
2005 Mar