Molecular Probes and Imaging Agents

Share:

EmailFacebookLinkedInXWhatsAppShare
This program supports development and biomedical application of molecular probes and imaging agents across all imaging modalities for the visualization, characterization and quantification of normal biological and pathophysiological processes and anatomy in living organisms at the molecular, cellular and organ levels.

Emphasis

The emphasis is on engineering of targeting and responsive molecular probes of high sensitivity and specificity for PET and SPECT (radiotracers), MR (T1, T2, CEST, hyperpolarized agents), EPR, CT, optical (fluorescent and bioluminescent probes), ultrasound (microbubbles) and photoacoustic imaging.  The imaging agents may be based on nano- and micro-particles, liposomes, dendrimers, proteins, small organic and inorganic molecules etc., and detectable by one or more imaging modalities.  Imaging agent development through methodologies such as chemical synthesis, biological mutagenesis, microfabrication, etc., may be pursued with an intent of leading to in vivo biomedical application.

Outcome

The goal of this program is to generate robust molecular probes, imaging agents and platforms for biomedical application across all disease areas to facilitate diagnostics and improve understanding of disease state, progression, and therapeutic response.

Additional emphasis

This program also supports the development of other imaging agents, for example:

  • multimodal molecular probes (PET/MRI, PET/fluorescent, etc.)
  • imaging reporter genes and reporter gene/imaging probe duos
  • molecular probes as part of theranostic systems or biosensors
  • imaging agents for cell labelling and in vivo tracking
  • molecular probes for image-guided interventions

Note

The following related scientific areas are supported by other NIBIB programs:

    Related News

    January 5, 2024
    Black and white image of liver fibrosis
    To provide better diagnosis and treatment of chronic liver diseases, researchers are working to use non-invasive MRI to detect and quantify liver fibrosis throughout the entire organ, which would enable earlier detection and the ability to monitor disease progression as well as the effects of treatment over time.
    December 27, 2023
    An automated tool captures circulating tumor cells in children with central nervous system cancers. The tool could make it easier to identify tumors that don't respond to treatment.
    December 8, 2023
    International effort to improve the resolution of magnetic resonance imaging (MRI) for studying the human brain has led to an ultra-high resolution 7 Tesla scanner.
    November 16, 2023
    NIH Blueprint MedTech program has issued nine awards in its first competition cycle. The program seeks to accelerate transformative medical devices to treat disorders of the nervous system.
    September 21, 2023
    NIH will advance the development of home-based and point-of-care health technologies with awards to six technology research and development centers around the country. The centers comprise the Point of Care Technology Research Network (POCTRN) and will parlay the momentum of the original network established in 2007 by the NIBIB.