Quantitative Methods for Macromolecular Interactions



The Quantitative Methods for Macromolecular Interactions (QMMI) Unit of the BEPS Shared Resource has expertise in:

  • Characterization of individual macromolecules
  • Characterization of interactions of macromolecules (self- and hetero association) and small ligands

QMMI is experienced in the application of a wide array of state-of-the-art biophysical instrumentation toward the characterization of individual macromolecules, as well as their interactions with other macromolecules or small ligands. This characterization may include:

  • Determination of equilibrium binding constants
    • thermodynamics (Delta G, Delta H, Delta Cp)
    • kinetics (kon, koff)

  • Measurement of solution-phase molecular weight, sedimentation coefficients, and translational diffusion coefficients, hydrodynamic radius, and overall asymmetry of macromolecules or their assemblies
  • Establishment of the stoichiometry of complexes
  • Insight into secondary structure or changes in structure upon ligand binding

The following analytical techniques are available within the QMMI Unit. Click here for pricing information.

Analytical ultracentrifugation (AUC) SV/SE

  • Brown PH, Balbo A, Schuck P. On the analysis of sedimentation velocity in the study of protein complexes. Eur Biohpys J, 38, (8), 1079-1099, 2009.
  • Balbo A, Zhao H, Brown PH, Schuck P. Assembly, loading, and alignment of an analytical ultracentrifuge sample cell. J Vis Exp, 33, pii 1530, 2009.
  • Brown PH, Balbo A, and Schuck P. Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. Current Protocols in Immunology, Chapter 18: Unit 18.15, 2008.
  • Balbo A, Brown PH, Braswell EH, and Schuck P. Measuring protein-protein interactions by equilibrium sedimentation. Current Protocols in Immunology, Chapter 18: Unit 18.8, 2007.
  • Lebowitz J, Lewis MS, Schuck P. Protein Science, 11:2067-2079, 2002.

Isothermal titration calorimetry (ITC)

  • Jelesarov I and Bosshard HR. Journal of Molecular Recognition, 12:3-18, 1999.
  • Pierce MM, Raman CS, Nall BT. Methods, 19:213-221, 1999.
  • Velazquez-Campoy A, Leavitt, SA, Freire E. Methods in Molecular Biology, 261:35 -54, 2004.

Dynamic light scattering (DLS)

  • Wyatt, PJ. Analytica Chimica Acta, 272:1-40, 1993. Surface Plasmon Resonance (SPR)

Surface Plasmon Resonance (SPR)

Differential scanning calorimetry (DSC)

  • Cooper AM, Nutley, A and Wadwood A. Differential scanning microcalorimetry. In Protein-ligand Interactions: hydrodynamics and calorimetry, pp. 287-318. Edited by S. E. Harding & B. Z. Chowdry, New York: Oxford University Press, 2000.
  • Jelesarov I and Bosshard HR. Journal of Molecular Recognition, 12, 3-18, 1999.

Circular dichroism spectroscopy (CDS

  • Kelly S and Price N. Current Protocols in Protein Science, 20.10.1 – 20.10.18, 2006.
  • Kelly S, Ness, TJ, and Price, N. Biochimica et Biophysica Acta, 1751:119-139, 2005.
  • Provencher SW and Glöckner J Biochemistry, 20:33-37, 1981

Asymmetric flow field-flow fractionation (AF4)

  • Ratanathanawongs SK and Williams DL. J Sep Sci, 29:1720 – 1732, 2006.
  • Fraunhofer W and Winter G. European Journal of Pharmaceutics and Biopharmaceutics, 58: 369-383, 2004.
  • Fraunhofer W, Winter G, and Coester C. Anal Chem, 76:1909-1920, 2004.


  • Lee, C. Y. 2009. Fluorescence Spectroscopy. Current Protocols Essential Laboratory Techniques. 2:2.4.1–2.4.29. DOI: 10.1002/9780470089941.et0204s02
Zhao HBerger AJBrown PHKumar JBalbo AMay CACasillas ELaue TMPatterson GHMayer MLSchuck P
J Gen Physiol
2012 May

Zhao HBrown PHBalbo AFernández-Alonso Mdel CPolishchuck NChaudhry CMayer MLGhirlando RSchuck P
Macromol Biosci
2010 Jul 07

Zhi LMans JPaskow MJBrown PHSchuck PJonjić SNatarajan KMargulies DH
2010 Mar 23

Jian XBrown PSchuck PGruschus JMBalbo AHinshaw JERandazzo PA
J Biol Chem
2009 Jan 16