Cellular and Supramolecular Structure and Function

The Cellular and Supramolecular Structure and Function (CSSF) Section develops new methods based on electron microscopy and related techniques. Our aim is to expand knowledge about complex biological and disease processes, as well as to characterize morphologically the action of diagnostic markers and therapeutic agents in cells. The nanometer scale of biological electron microscopy lies between the realms of live-cell optical microscopy and atomic-scale structural tools that require extraction and purification of cellular components. Current research includes development of techniques for (1) determining the tertiary and quaternary structures of macromolecular assemblies, (2) visualizing 3D ultrastructure, (3) mapping the elemental composition of subcellular compartments quantitatively, and (4) studying bionanoparticles and their interactions with cells. We are applying these methods to structural biology, cellular biology, neurobiology, cancer biology, and nanomedicine.

Leapman group photo
Back row left to right: Yajnesh Vedanaparti, Kenny Ling, Guofeng Zhang, Ph.D., Matthew Guay, Ph.D., Zeyad Emam; front row left to right: Maria A. Aronova, Ph.D., Richard Leapman, Ph.D. (lab PI), Qianping HE, Ph.D.
Photo: C. Chang for NIBIB

 

Intramural Research Training Award Program/CSSF Alumni

Quantitative STEM Analysis of Supramolecular Assemblies
Dark-field scanning transmission electron microscopy of unstained fibrils of the arctic mutation of Alzheimer’s amyloid beta peptide, with co-deposited tobacco mosaic virus as a mass calibration standard.  The mass measurements showed that the fibrils contained two or four beta sheets

The purpose of this research is to develop techniques for determining quantitative structural information from supramolecular assemblies using the technique of scanning transmission electron microscopy (STEM). In STEM a finely focused probe of high-energy electrons is scanned across a biological structure of interest and various signals are detected at each image pixel. For example, we are using the annular dark-field signal to determine the molecular masses of large protein assemblies, e.g., Alzheimer’s disease-related amyloid fibrils; such measurements provide information about arrangement of subunits.

Novel Approaches for Determining 3D Cellular Ultrastructure

We are also developing techniques for determining subcellular structure based on axial bright-field STEM tomography by recording images from micrometer-thick sections of cells over a range of tilt angles. Using this approach, we have shown that it is possible to reconstruct much thicker volumes than can be achieved with conventional TEM electron tomography. We are currently applying STEM tomography to visualize entire synapses in the nervous system at a spatial resolution of a few nanometers. Of particular current interest is to determine the structure of postsynaptic densities in hippocampal neurons, as well as ribbon synapses in rod bipolar cells of retina. We are also using STEM tomography to study a number of biological systems outside the field of neurobiology, including the structural changes that occur on activation of human blood platelets.

Quantitative Nanoscale Analysis using Inelastic Electron Scattering
Energy-filtered transmission electron microscopy of unstained section of mouse pancreatic islet of Langerhans, showing sulfur (blue), phosphorus (red), and nitrogen (green); insulin granules in the beta cell contain high sulfur, whereas glucagon granules in alpha cell contain low sulfur

In this research, we are developing techniques to map chemical elements contained in subcellular structures using (1) energy-filtered transmission electron microscopy (EFTEM), and (2) STEM coupled with electron energy loss spectroscopy (EELS). In both approaches, we acquire hyperspectral inelastic images carrying information from characteristic excitations of atomic core-shells in the specimen. Our aim is to extract quantitative composition and to achieve a sensitivity of a few atoms. Recent applications include imaging the iron cores of individual ferritin molecules in neurons and other cells, where iron plays an important physiological role. In another application, we are combining EFTEM with electron tomography to map DNA and protein in three-dimensions within cell nuclei by using the phosphorus and nitrogen signals.

Methods for 3D Reconstruction
Rendered 3D model of a malaria-infected erythrocyte obtained by scanning transmission electron tomography

Tomographic reconstructions based on the standard weighted back-projection (WBP) algorithm suffer from artifacts due to the limited available angular tilt range. Algorithms such as the simultaneous iterative reconstruction technique (SIRT), which we have implemented in our laboratory, provide some improvements in the quality of 3D reconstructions but artifacts still persist. We are exploring other techniques by introducing some prior knowledge about the reconstructed volume by the application of regularization conditions.

Characterization of Bionanoparticles

Bionanoparticles being developed for potential use in theranostic nanomedicine often have a hybrid structure that incorporates both organic and inorganic components. STEM and EFTEM provide unique information about the arrangement and proportions of the chemical constituents that are critical in controlling the function of such hybrid bionanoparticles. We are using these methods to characterize bionanoparticles containing a variety of moieties including MRI contrast agents, optical fluorescence probes, nanogold atomic clusters, carbon nanotubes carriers, as well as anti-cancer drugs such as doxorubicin.

FEI Tecnai TF30 transmission electron microscope
FEI Tecnai TF30 transmission electron microscope

The Cellular and Supramolecular Structure and Function (CSSF) Section of LCIMB is located in Building 13, Room 3E63.

The laboratory has facilities for preparing tissues, cells, and isolated macromolecular assemblies for electron microscopy, either in the CSSF Section or in the neighboring NIH-wide Electron Microscopy Shared Resource. Preparative equipment includes a Baltec HPM10 high-pressure freezing machine, FEI vitrobot for freezing EM grids, Leica UCT/FCS cryo-ultramicrotome, Leica EM UC6 ultramicrotome, Leica EM/AFS2 freeze-substitution system, EMS and Edwards 306 carbon evaporators.

This is an image of a scanning transmission electron microscope
VG HB501 scanning transmission electron microscope

The laboratory’s dedicated electron microscope is an FEI Tecnai TF30 TEM operated at an accelerating voltage of 300 kV and equipped with a field-emission source. The instrument is also equipped with a Gatan Tridiem imaging filter, two 2k x 2k pixel Gatan Ultrascan cooled CCD cameras, a Fischione HAADF detector, Fischione dual-axis tomography holder, Gatan cryo-transfer tomography holder. The instrument is also has FEI and Gatan software packages for performing electron tomography, hyperspectral imaging, electron energy loss spectroscopy, and scanning transmission electron microscopy. Through the neighboring Electron Microscopy Shared Resource, the laboratory also has access to an FEI T12 TEM operating at an accelerating voltage of 120 kV, and equipped for electron tomography, and energy-dispersive x-ray spectroscopy. Also available are a Hitachi H4800 field-emission scanning electron microscope, and a Zeiss Sigma SEM equipped with a Gatan 3View serial blockface imaging system.

Storrie BRhee SWPokrovskaya IDLing KVedanaparti YAronova MStalker TJBrass LFLeapman R
Blood
2019 Nov 13

Chen XWinters CCrocker VLazarou MSousa AALeapman RDReese TS
Front Neuroanat
2018

Pokrovskaya IDJoshi STobin MDesai RAronova MAKamykowski JAZhang GWhiteheart SWLeapman RDStorrie B
Blood Adv
2018 Nov 13


Shen ZSong JZhou ZYung BCAronova MALi YDai YFan WLiu YLi ZRuan HLeapman RDLin LNiu GChen XWu A
Adv. Mater. Weinheim
2018 Jul 04

McBride ELRao AZhang GHoyne JDCalco GNKuo BCHe QPrince AAPokrovskaya IDStorrie BSousa AAAronova MALeapman RD
J. Struct. Biol.
2018 Jun



Sweeney AMFleming KEMcCauley JPRodriguez MFMartin ETSousa AALeapman RDScimemi A
Sci Rep
2017 Mar 03

Lu NHuang PFan WWang ZLiu YWang SZhang GHu JLiu WNiu GLeapman RDLu GChen X
Biomaterials
2017 May

Zhu LAlmaça JDadi PKHong HSakamoto WRossi MLee RJVierra NCLu HCui YMcMillin SMPerry NAGurevich VVLee AKuo BLeapman RDMatschinsky FMDoliba NMUrs NMCaron MGJacobson DACaicedo AWess J
Nat Commun
2017 Feb 01

Yadav SWilliamson JKAronova MAPrince AAPokrovskaya IDLeapman RDStorrie B
Platelets
2017 Jun

Bryant LHKim SJHobson MMilo BKovacs ZIJikaria NLewis BKAronova MASousa AAZhang GLeapman RDFrank JA
Nanomedicine
2017 Feb

Guay MDCzaja WAronova MALeapman RD
Sci Rep
2016 Jun 13

Zhu GLiu YYang XKim YHZhang HJia RLiao HSJin ALin JAronova MLeapman RNie ZNiu GChen X
Nanoscale
2016 Mar 28

Sousa AAHassan SAKnittel LLBalbo AAronova MABrown PHSchuck PLeapman RD
Nanoscale
2016 Mar 28

Pokrovskaya IDAronova MAKamykowski JAPrince AAHoyne JDCalco GNKuo BCHe QLeapman RDStorrie B
J. Thromb. Haemost.
2016 Mar

Chen XLevy JMHou AWinters CAzzam RSousa AALeapman RDNicoll RAReese TS
Proc. Natl. Acad. Sci. U.S.A.
2015 Dec 15

Chen RJZhang GGarfield SHShi YJChen KGRobey PGLeapman RD
PLoS ONE
2015


Pfeifer CRShomorony AAronova MAZhang GCai TXu HNotkins ALLeapman RD
J. Struct. Biol.
2015 Jan

Pothayee NChen DYAronova MAQian CBouraoud NDodd SLeapman RDKoretsky AP
J Mater Chem B
2014

Graydon CWZhang JOesch NWSousa AALeapman RDDiamond JS
J. Neurosci.
2014 Jul 02

Bhirde AAChikkaveeraiah BVSrivatsan ANiu GJin AJKapoor AWang ZPatel SPatel VGorbach AMLeapman RDGutkind JSHight Walker ARChen X
ACS Nano
2014 May 27


Huang PLin JLi WRong PWang ZWang SWang XSun XAronova MNiu GLeapman RDNie ZChen X
Angew. Chem. Int. Ed. Engl.
2013 Dec 23

Abreu FSousa AAAronova MAKim YCox DLeapman RDAndrade LRKachar BBazylinski DALins U
J. Struct. Biol.
2013 Feb




Norlin NHellberg MFilippov ASousa AAGröbner GLeapman RDAlmqvist NAntzutkin ON
J. Struct. Biol.
2012 Oct


Fera ADosemeci ASousa AAYang CLeapman RDReese TS
J. Comp. Neurol.
2012 Dec 15

Bhirde AAKapoor ALiu GIglesias-Bartolome RJin AZhang GXing RLee SLeapman RDGutkind JSChen X
ACS Nano
2012 Jun 26

Sousa AAMorgan JTBrown PHAdams AJayasekara MPZhang GAckerson CJKruhlak MJLeapman RD
Small
2012 Jul 23

Xing RZhang FXie JAronova MZhang GGuo NHuang XSun XLiu GBryant LHBhirde ALiang AHou YLeapman RDSun SChen X
Nanoscale
2011 Dec

Bhirde AALiu GJin AIglesias-Bartolome RSousa AALeapman RDGutkind JSLee SChen X
Theranostics
2011

Cai THirai HZhang GZhang MTakahashi NKasai HSatin LSLeapman RDNotkins AL
Diabetologia
2011 Sep

Venzo AAntonello SGascón JAGuryanov ILeapman RDPerera NVSousa AZamuner MZanella AMaran F
Anal. Chem.
2011 Aug 15

Chen XNelson CDLi XWinters CAAzzam RSousa AALeapman RDGainer HSheng MReese TS
J. Neurosci.
2011 Apr 27

Xie JZhang FAronova MZhu LLin XQuan QLiu GZhang GChoi KYKim KSun XLee SSun SLeapman RChen X
ACS Nano
2011 Apr 26

Lin XXie JNiu GZhang FGao HYang MQuan QAronova MAZhang GLee SLeapman RChen X
Nano Lett.
2011 Feb 09

Bhirde AAPatel SSousa AAPatel VMolinolo AAJi YLeapman RDGutkind JSRusling JF
Nanomedicine (Lond)
2010 Dec

Aronova MASousa AALeapman RD
Micron
2011 Apr


Aronova MASousa AAZhang GLeapman RD
J Microsc
2010 Sep 01

Leapman RD
Nat Nanotechnol
2010 Jul

Fukunaga MLi TQvan Gelderen Pde Zwart JAShmueli KYao BLee JMaric DAronova MAZhang GLeapman RDSchenck JFMerkle HDuyn JH
Proc. Natl. Acad. Sci. U.S.A.
2010 Feb 23

Bhirde AASousa AAPatel VAzari AAGutkind JSLeapman RDRusling JF
Nanomedicine (Lond)
2009 Oct

Hohmann-Marriott MFSousa AAAzari AAGlushakova SZhang GZimmerberg JLeapman RD
Nat. Methods
2009 Oct

Chen KGLeapman RDZhang GLai BValencia JCCardarelli COVieira WDHearing VJGottesman MM
J. Natl. Cancer Inst.
2009 Sep 16

Sarin HKanevsky ASWu HSousa AAWilson CMAronova MAGriffiths GLLeapman RDVo HQ
J Transl Med
2009 Jun 23

Sousa AAAronova MAWu HSarin HGriffiths GLeapman RD
Nanomedicine (Lond)
2009 Jun

Paravastu AKQahwash ILeapman RDMeredith SCTycko R
Proc. Natl. Acad. Sci. U.S.A.
2009 May 05

Bhirde AAPatel VGavard JZhang GSousa AAMasedunskas ALeapman RDWeigert RGutkind JSRusling JF
ACS Nano
2009 Feb 24

Aronova MAKim YCPivovarova NBAndrews SBLeapman RD
Ultramicroscopy
2009 Feb


Sarin HKanevsky ASWu HBrimacombe KRFung SHSousa AAAuh SWilson CMSharma KAronova MALeapman RDGriffiths GLHall MD
J Transl Med
2008 Dec 18

Chen XWinters CAzzam RCrocker VLi XGalbraith JLeapman RReese Ts
Microsc. Microanal.
2008 Aug

Paravastu AKLeapman RDYau WMTycko R
Proc. Natl. Acad. Sci. U.S.A.
2008 Nov 25

Trachtenberg SDorward LMSperansky VVJaffe HAndrews SBLeapman RD
J. Mol. Biol.
2008 May 09




Chen XWinters CAzzam RLi XGalbraith JALeapman RDReese TS
Proc. Natl. Acad. Sci. U.S.A.
2008 Mar 18


Zhang GHirai HCai TMiura JYu PHuang HSchiller MRSwaim WDLeapman RDNotkins AL
J. Endocrinol.
2007 Nov


Aronova MAKim YCHarmon RSousa AAZhang GLeapman RD
J. Struct. Biol.
2007 Oct

Sousa AAAronova MAKim YCDorward LMZhang GLeapman RD
J. Struct. Biol.
2007 Sep

Daly MJGaidamakova EKMatrosova VYVasilenko AZhai MLeapman RDLai BRavel BLi SMKemner KMFredrickson JK
PLoS Biol.
2007 Apr

Leapman RDAronova MA
Methods Cell Biol.
2007

Chesnick IEAvallone FALeapman RDLandis WJEidelman NPotter K
Bone
2007 Apr

Aronova MAKim YCZhang GLeapman RD
Ultramicroscopy
2007

Chen KGValencia JCLai BZhang GPaterson JKRouzaud FBerens WWincovitch SMGarfield SHLeapman RDHearing VJGottesman MM
Proc. Natl. Acad. Sci. U.S.A.
2006 Jun 27

Chen XVinade LLeapman RDPetersen JDNakagawa TPhillips TMSheng MReese TS
Proc. Natl. Acad. Sci. U.S.A.
2005 Aug 09

Zhang PLand WLee SJuliani JLefman JSmith SRGermain DKessel MLeapman RRouault TASubramaniam S
J. Struct. Biol.
2005 May

Petkova ATLeapman RDGuo ZYau WMMattson MPTycko R
Science
2005 Jan 14

Leapman RD
Curr. Opin. Neurobiol.
2004 Oct

Leapman RDKocsis EZhang GTalbot TLLaquerriere P
Ultramicroscopy
2004 Jul








Petkova ATIshii YBalbach JJAntzutkin ONLeapman RDDelaglio FTycko R
Proc. Natl. Acad. Sci. U.S.A.
2002 Dec 24


Potter KLeapman RDBasser PJLandis WJ
J. Bone Miner. Res.
2002 Apr




Antzutkin ONBalbach JJLeapman RDRizzo NWReed JTycko R
Proc. Natl. Acad. Sci. U.S.A.
2000 Nov 21

Leapman RDRizzo NW
Ultramicroscopy
1999 Jun

Thirion STroadec JDPivovarova NBPagnotta SAndrews SBLeapman RDNicaise G
Proc. Natl. Acad. Sci. U.S.A.
1999 Mar 16

Leapman RDJarnik MSteven AC
J. Struct. Biol.
1997 Nov

Pozzo-Miller LDPivovarova NBLeapman RDBuchanan RAReese TSAndrews SB
J. Neurosci.
1997 Nov 15

Scott DADocampo RDvorak JAShi SLeapman RD
J. Biol. Chem.
1997 Oct 31



Shi SSun SAndrews SBLeapman RD
Microsc. Res. Tech.
1996 Feb 15







Andrews SBGallant PELeapman RDSchnapp BJReese TS
Proc. Natl. Acad. Sci. U.S.A.
1993 Jul 15


Leapman RDHunt JABuchanan RAAndrews SB
Ultramicroscopy
1993 Feb





Dvorak JAEngel JCLeapman RDSwyt CRPella PA
Mol. Biochem. Parasitol.
1988 Oct

Andrews SBLeapman RDLandis DMReese TS
Proc. Natl. Acad. Sci. U.S.A.
1988 Mar


Leapman RDOrnberg RL
Ultramicroscopy
1988

Fiori CELeapman RDSwyt CRAndrews SB
Ultramicroscopy
1988



Silbermann MReddi AHHand ARLeapman RDVon der Mark KFranzen A
J. Anat.
1987 Apr

Andrews SBLeapman RDLandis DMReese TS
Proc. Natl. Acad. Sci. U.S.A.
1987 Mar

Livne EOliver CLeapman RDRosenberg LCPoole ARSilbermann M
J. Anat.
1987 Feb


Leapman RDGorlen KESwyt CR
Scan Electron Microsc
1985